

Vandeleur Environmental Pty Ltd

Preliminary identification of ecosystem services – Coorong and Lakes Alexandrina and Albert Ramsar site

Report to the Department of Environment, Water and Natural Resources

Executive summary

The Coorong and Lakes Alexandrina and Albert site was listed as a 'Wetland of International Importance' under the Ramsar Convention in 1985. The Ecological Character Description of The Coorong and Lakes Alexandrina and Albert Wetland of International Importance (Phillips & Muller, 2006) provided the baseline description of the wetland with the intention of it being used to assess changes in the ecological character of the sites.

Ecosystem services can be broadly defined as the benefits people obtain from ecosystems (Millennium Assessment, 2005). Phillips and Muller (2006) provided limited description and justification for ecosystem services supplied by the site, with limited evidence to demonstrate their occurrence or quantify their importance to the site. A subsequent technical review of the ECD undertaken by Water's Edge Consulting (Butcher 2011) identified and clarified the details necessary to describe the ecosystem services for the site based on those proposed by Phillips and Muller (2006) to comply with the DSEWPaC guidelines.

This paper seeks to summarise the information pertaining to the ecosystem services provided by the site and in doing so, identify those that are important to ecosystem functioning to assist with updating the ECD Report.

Contents

Executive summary	ii
Preliminary identification of ecosystem services – Coorong and Lakes Alexandrina and Albert Ran site.	nsar 1
Introduction	1
The Coorong and Lakes Alexandrina and Albert Ramsar site	1
What are Ecosystem Services?	4
The origins of Ecosystem Services	4
Biodiversity and its relationship to ecosystem services	8
Challenges of the ecosystem service approach	9
Ecosystem Services of Wetlands	11
Potential Ecosystem Services of the Coorong and Lower Lakes	15
Where to from here?	24
Data Collation and Gap Analysis	24
Functional Assessment Protocol for the Coorong and Lower Lakes	25
Conclusion	26
References	27
Appendix 1 - Potential ecosystem services supported by the Coorong and Lakes Ramsar Site management units (expanded tables)	34

Preliminary identification of ecosystem services – Coorong and Lakes Alexandrina and Albert Ramsar site.

Introduction

The Coorong and Lakes Alexandrina and Albert site was listed as a 'Wetland of International Importance' under the Ramsar Convention in 1985. As a signatory to the Ramsar Convention, the Australian and South Australian Governments are expected to manage their Ramsar sites so as to maintain the ecological character of each site, remain informed of any changes to the ecological character of Ramsar sites and notify the Ramsar Secretariat of any changes at the earliest opportunity (Ramsar Convention 1987, Article 3.2 and further clarified by the Parties in Resolution VIII.8, 2002; Ramsar Convention 2005, Resolution IX.1 Annex B).

Ecological character is the combination of the ecosystem components, processes, benefits and services that characterise the wetland at a given point in time (Ramsar Convention 2005a, Resolution IX.1 Annex A).

The Ecological Character Description of The Coorong and Lakes Alexandrina and Albert Wetland of International Importance (Phillips & Muller, 2006) provides the baseline description of the wetland and can be used to assess changes in the ecological character of these sites. Following a notification to the Ramsar Secretariat in 2006 of potential changes in the ecological character of the site, followed by an update to this in 2008 and the availability of additional information about the site's Ecological Character, in line with Department of Sustainability, Environment, Water, Population and Communities (DSEWPaC) guidelines (Department of the Environment, Water, Heritage and the Arts, 2008), the Ecological Character Description (ECD) Report will be updated to include this new information.

Phillips and Muller (2006) provided limited description and justification for ecosystem services supplied by the site, with limited evidence to demonstrate their occurrence or quantify their importance to the site. A subsequent technical review of the 2006 ECD, undertaken by Water's Edge Consulting (Butcher 2011), identified and clarified the additional details necessary to describe the site's ecosystem services in compliance with the DSEWPaC guidelines.

There is a need, therefore, for a more detailed identification and summary of ecosystem services and benefits within the context of updating the Ecological Character Description for the site. This paper seeks to summarise the information pertaining to the ecosystem services provided by the site and, in doing so, identify those that are important to ecosystem function to assist with updating the ECD Report.

The Coorong and Lakes Alexandrina and Albert Ramsar site

The Coorong and Lakes Ramsar site lies at the terminus of the Murray-Darling Basin. It incorporates the freshwater bodies of Lakes Alexandrina and Albert and the more saline lagoons of the Coorong.

It is the only estuary within the Murray-Darling Basin and the Murray Mouth is the only connection between this one million square kilometre inland basin and the sea.

Figure 1 Map of Coorong and Lakes Alexandrina and Albert Ramsar Site.

Figure from Australian Government Department of the Environment Australian Wetlands Database (http://www.environment.gov.au/cgibin/wetlands/ramsardetails.pl?refcode=25#)

Surface water flows are predominantly from the River Murray into the north of Lake Alexandrina near Wellington, with other inflows from the tributary streams draining the eastern Mount Lofty Ranges (EMLR) along the south-western edge of Lake Alexandrina.

Lake Albert lies to the south east of Lake Alexandrina connected via a narrow channel (Narrung Narrows) near Point Malcolm. Lake Alexandrina is the primary source of inflows into Lake Albert, with supplementation from local rainfall and groundwater discharge. As Lake Albert has no through-flow connection to the Coorong, it represents a local, inland terminus of the River Murray system.

The fresh waters of the River Murray and Lake Alexandrina are separated by a series of five barrages from the more saline water of the Murray Mouth Estuary and Coorong lagoons. In recent years, inflows from the South East of South Australia into the Coorong's South Lagoon have been re-established to a minor extent, although under regulated conditions via the Upper South East Drainage Scheme.

The Murray Mouth is the only site where silt, salt and other pollutants can exit the Murray-Darling Basin through the provision of flow. These flows or barrage releases are necessary to maintain an 'open' Murray Mouth to the Southern Ocean.

The Ramsar site covers an area of approximately 142,500 ha which incorporates 23 different wetland types existing as a mosaic of fresh to hypersaline habitats variously interconnected across time and space. Ramsar Criterion 1 seeks to recognise sites that contain

'... a representative, rare, or unique example of a natural or near-natural wetland type found within the appropriate bioregion'

(Ramsar Convention 2008)

The Coorong and Lakes qualify against this criterion in addition to seven of the other eight (see the 2013 Ramsar Information Sheet for the site for further details). To assist this description of ecological character, the Ramsar site has been sub-divided into six units as follows:

Freshwater system units:

- Lake Alexandrina
- Lake Albert
- Tributary wetlands (lower reaches of Finniss River, Currency Creek and Tookayerta Creek).

Estuarine-saline system units:

- Murray Mouth and Estuary
- North Lagoon
- South Lagoon.

A full description of the system units (freshwater and estuarine-saline) are contained within Section 4 of the Coorong and Lakes Alexandrina and Albert Ramsar Site Ecological Character Description (Phillips & Muller 2006). Generally, the 23 wetland types contained within the Ramsar site can be grouped within three types (Marine/coastal, inland and human-made wetlands) as described by the Ramsar Convention. Table 1 (as borrowed from Phillips & Muller 2006) lists the wetland types as described within ECD and their extent within the site.

Marin	ne/Coastal Wetlands	Area (ha)
A	Permanent shallow marine waters in most cases less than six metres deep at low tide; includes sea bays and straits.	50
D	Rocky marine shores; includes rocky offshore islands, sea cliffs.	788*
E	Sand, shingle or pebble shores; includes sand bars, spits and sandy islets; includes dune systems and humid dune slacks.	1,020#
F	Estuarine waters; permanent water of estuaries and estuarine systems of deltas.	2,200
G	Intertidal mud, sand or salt flats.	3,142
Н	Intertidal marshes; includes salt marshes, salt meadows, saltings, raised salt marshes; includes tidal brackish and freshwater marshes.	536
I	Intertidal forested wetlands; includes mangrove swamps, nipah swamps and tidal freshwater swamp forests.	4
J	Coastal brackish/saline lagoons; brackish to saline lagoons with at least one relatively narrow connection to the sea.	10,128
К	Coastal freshwater lagoons; includes freshwater delta lagoons.	41

Inland Wetlands		
м	Permanent rivers/streams/creeks; includes waterfalls.	221
Ν	Seasonal/intermittent/irregular rivers/streams/creeks.	200
0	Permanent freshwater lakes (over 8 ha); includes large oxbow lakes.	79,480
Р	Seasonal/intermittent freshwater lakes (over 8 ha); includes floodplain lakes.	120
R	Seasonal/intermittent saline/brackish/alkaline lakes and flats.	1,729
Ss	Seasonal/intermittent saline/brackish/alkaline marshes/pools.	1,289
Тр	Permanent freshwater marshes/pools ; ponds (below 8 ha), marshes and swamps on inorganic soils; with emergent vegetation water-logged for at least most of the growing season.	4,474
Ts	Seasonal/intermittent freshwater marshes/pools on inorganic soils; includes sloughs, potholes, seasonally flooded meadows, sedge marshes.	1,037
W	Shrub-dominated wetlands; shrub swamps, shrub-dominated freshwater marshes, shrub carr, alder thicket on inorganic soils.	4,875
Xf	Freshwater, tree-dominated wetlands; includes freshwater swamp forests, seasonally flooded forests, wooded swamps on inorganic soils.	1,470
Y	Freshwater springs; oases.	<10
Human-made wetlands		
4	Seasonally flooded agricultural land (including intensively managed or grazed wet meadow or pasture).	1,235
6	Water storage areas; reservoirs/barrages/dams/impoundments (generally over 8 ha).	1
9	Canals and drainage channels, ditches.	44

Notes:

Ramsar wetland types not found in the Coorong and Lakes system have not been included in the table.

* = includes 165 ha from Lake Alexandrina a freshwater part of the system.

= includes 6 ha from Lake Alexandrina and 1 ha from Lake Albert; freshwater parts of the system

Shaded boxes indicate the dominant wetland types within each broad category; marine-coastal, inland and human-made.

The total area of wetland types is approximately 114,000 hectares. The balance of the land (approx 26,000 hectares) within the Ramsar site is terrestrial habitat, which is not unclassified under the Ramsar Convention (see Section 2.2 for a description of the site boundaries).

What are Ecosystem Services?

The origins of Ecosystem Services

Ecosystem services are essentially those services that an ecosystem provides to humans and has been defined within the Millennium Ecosystem Assessment (2005) as the benefits people obtain from ecosystems. The MEA (2005) derived its definition from two other commonly referenced definitions, Daily (1997):

Ecosystem services are the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfil human life. They maintain biodiversity and the production of ecosystem goods, such as seafood, forage timber, biomass fuels, natural fiber, and many pharmaceuticals, industrial products, and their precursors (Daily 1997).

and Constanza et al. (1997)

Ecosystem goods (such as food) and services (such as waste assimilation) represent the benefits human populations derive, directly or indirectly, from ecosystem functions (Constanza et al. 1997).

The Millennium Ecosystem Assessment (MEA) classified ecosystem services into four categories: provisioning, regulating, cultural, and supporting services with an acknowledgement that some of the categories overlapped. The MEA (2005) demonstrated linkages between Ecosystem Services and Human Well-being as summarised in Figure 2.

Figure 2 - Linkages between Ecosystem Services and Human Well-being (from Millennium Ecosystem Assessment 2005)

Provisioning Services

These provide the products available from ecosystems for use and consumption by people, including:

- *Food and fibre*. This includes the vast range of food products derived from plants, animals, and microbes, as well as materials such as wood, jute, hemp, silk, and many other products derived from ecosystems.
- *Fuel.* Wood, dung, and other biological materials serve as sources of energy.
- *Genetic resources.* This includes the genes and genetic information used for animal and plant breeding and biotechnology.
- *Biochemicals, natural medicines, and pharmaceuticals.* Many medicines, biocides, food additives such as alginates, and biological materials are derived from ecosystems.

- *Ornamental resources*. Animal products, such as skins and shells, and flowers are used as ornaments.
- *Fresh water*. Fresh water, used for domestic, irrigation, industrial and other purposes, and a good example of the overlap and linkages between categories (e.g. between provisioning, supporting and regulating services).

Regulating Services

These provide direct benefits to people by regulating and maintaining their natural and built environments, including:

- *Air quality maintenance*. Ecosystems both contribute chemicals to and extract chemicals from the atmosphere, influencing many aspects of air quality.
- *Climate regulation*. Ecosystems influence climate both locally and globally. For example, at a local scale, changes in land cover can affect both temperature and precipitation. At the global scale, ecosystems play an important role in climate by either sequestering or emitting greenhouse gases.
- *Water regulation*. The timing and magnitude of runoff, flooding, and aquifer recharge can be strongly influenced by changes in land cover, including, in particular, alterations that change the water storage potential of the system, such as the conversion of wetlands or the replacement of forests with croplands or croplands with urban areas.
- *Erosion control*. Vegetative cover plays an important role in soil retention and the prevention of landslides.
- *Water purification and waste treatment*. Ecosystems can be a source of impurities in fresh water but also can help to filter out and decompose organic wastes introduced into inland waters and coastal and marine ecosystems.
- *Regulation of human diseases.* Changes in ecosystems can directly change the abundance of human pathogens, such as cholera, and can alter the abundance of disease vectors, such as mosquitoes.
- *Biological control*. Ecosystem changes affect the prevalence of crop and livestock pests and diseases.
- *Pollination*. Ecosystem changes affect the distribution, abundance, and effectiveness of pollinators in terms of the success of crops.
- *Storm protection.* The presence of coastal ecosystems such as mangroves and coral reefs can dramatically reduce the damage caused by hurricanes or large waves.

Cultural Services

These provide the nonmaterial benefits people obtain from ecosystems through spiritual enrichment, cognitive development, reflection, recreation, and aesthetic experiences, including:

- *Cultural diversity*. The diversity of ecosystems is one factor influencing the diversity of cultures.
- *Spiritual and religious values*. Many religions attach spiritual and religious values to ecosystems or their components.
- *Knowledge systems* (traditional and formal). Ecosystems influence the types of knowledge systems developed by different cultures.

- *Educational values*. Ecosystems and their components and processes provide the basis for both formal and informal education in many societies.
- *Inspiration*. Ecosystems provide a rich source of inspiration for art, folklore, national symbols, architecture, and advertising.
- *Aesthetic values.* Many people find beauty or aesthetic value in various aspects of ecosystems, as reflected in the support for parks, "scenic drives," and the selection of housing locations.
- *Social relations*. Ecosystems influence the types of social relations that are established in particular cultures. Fishing societies, for example, differ in many respects in their social relations from nomadic herding or agricultural societies.
- *Sense of place*. Many people value the "sense of place" that is associated with recognized features of their environment, including aspects of the ecosystem.
- *Cultural heritage values*. Many societies place high value on the maintenance of either historically important landscapes ("cultural landscapes") or culturally significant species.
- *Recreation and ecotourism.* People often choose where to spend their leisure time based in part on the characteristics of the natural or cultivated landscapes in a particular area.

Supporting Services

These provide only indirect benefits to people by supporting and maintaining all other ecosystem services. They differ from provisioning, regulating, and cultural services in that their impacts on people are generally indirect and may occur over a very long time, whereas changes in the other categories have relatively direct and short-term impacts on people. Some examples of supporting services are outlined below:

- *Soil formation and retention.* Because many provisioning services depend on soil fertility, the rate of soil formation influences human well-being in many ways e.g. through crop success.
- *Photosynthesis.* Photosynthesis produces oxygen necessary for most living organisms and therefore is fundamental for humans both through food production and oxygen availability.
- *Primary production*: The assimilation or accumulation of energy and nutrients by organisms. Benefot to humans is multi-faceted but includes food production, input to food webs etc.
- *Nutrient cycling:* Approximately 20 nutrients essential for life, including nitrogen and phosphorus, cycle through ecosystems and are maintained at different concentrations in different parts of ecosystems and are therefore available for uptake and is a primary building block of food webs.
- *Water cycling:* Water cycles through ecosystems and is essential for living organisms.
- *Provisioning of habitat:* The ecosystem provides habitat for migratory species eg wetlands provide vital feeding and resting areas for migratory bird species.

Three international classification systems are currently utilised for classification of ecosystem services: Millennium Ecosystem Assessment (MEA 2005); The Economics of Ecosystems and Biodiversity (TEEB 2010) and the Common International Classification of Ecosystem Services (CICES 2013). The three systems are similar and all include provisioning, regulatory and cultural services.

The current European Union guidance on mapping and assessment of ecosystems and their services (Maes *et al.* 2013) is based upon the Ecosystems Services Cascade Model (Haines-Young & Potschin 2010), the TEEB Framework (TEEB 2010) and the UK National Ecosystem Assessment (2011). The EU

guidance document aims to ensure consistency and allow for aggregation and comparison of results from across the EU and as such proposes common classifications and definitions in relation to ecosystem services.

Biodiversity and its relationship to ecosystem services

The necessity of understanding the underpinning processes of the system is fundamental to being able to map the ecosystem services a system provides. Clark *et al.* (2001) summarised this:

'The integrated approach of ecosystem services concept required the consideration of interacting ecosystem functions in any study assessing ecosystem services and goods. This necessitates a complete understanding of the system and thus a representation of the relevant biophysical processes in a realistic way.'

It is well established that biodiversity plays an important role in underpinning ecosystem services and that understanding the sensitivity of ecosystem processes and services to biodiversity changes is essential (Hooper 2005, EASAC 2009). There does however seem to be confusion within the academic literature as to how biodiversity fits within the ecosystem services concept. This confusion is demonstrated by the varied and differing approaches whereby biodiversity seems to be alternatively considered as both a regulator of ecosystem processes or final ecosystem service and as a good in its own right (Mace *et al.*2011).

The MEA (2005) demonstrated linkages between Ecosystem Services and Human Well-being (as summarised previously in Figure 1). The UKNEA also went on to further elicit and demonstrate these linkages. Within the MEA classification, biodiversity fits more within the regulating and cultural services (MEA, 2005) than the provisioning services. The UK National Ecosystems Assessment (NEA) was developed around a conceptual framework in a comparable way to the Millennium Assessment (MEA), whereby the assessment focuses on the output of final ES from a range of ecosystems types and the goods and values assessed with the services. The NEA works on the principal that final ES are underpinned by a range of ecosystem processes and recognises the functional role of biodiversity.

Other authors have argued that this is misrepresenting biodiversity in representing its importance as being only in underpinning final ES and that biodiversity can variously be a key ecosystem process, a final ES or a good (Norris 2012, Mace *et al.*2012). De Groot *et al.*(2006) includes biodiversity maintenance through habitat provision as an ecosystem service, asserting that biodiversity services underpin the provision of many other services.

A key issue is that often the data available in relation to biodiversity is restricted to species level research (often of larger charismatic or iconic species). The NEA examined the quality of the monitoring data on status and trends for a range of biodiversity groups in the UK and found data quality was correlated with cultural importance. This is in agreement with the data held for the Coorong and Lower Lakes (and the wider Murray Darling system,) in that key gaps in knowledge exist for elements that are less iconic or recognised by the community (such as micro-organisms and micro-invertebrates) and little is known of their role in other underpinning processes such as nutrient cycling and transformation.

Norris (2012) considered biodiversity in the context of ecosystem services and raised the interesting observation that most biodiversity science is largely retrospective (in that it usually attempts to understand how and why biodiversity has been lost and how to halt and reverse its decline). This is

very different from understanding how multiple, concurrent future changes in environment might impact on biodiversity and ecosystem services.

The relationship between species stability and diversity changes are poorly understood. Steudel *et al.*(2011) examined biomass production in aquatic plant assemblages of differing richness and found that richness did not explain variation in biomass in a stable environment. However, under changed environmental conditions (drought, increased salinity etc.), richness was important and species diverse assemblages were more productive.

Biodiversity can be considered to play a key role in the structural establishment of ecosystems which is essential in maintaining basic ecosystem processes and supporting ecosystem functions (with ecosystem functions being the potential to deliver ecosystem services). Biodiversity can be considered to be critical to ecosystem functioning through both direct and indirect means. Biodiversity directly delivers an ecosystem service (as well as supporting ecosystem functions) through aspects such as genetic diversity, species richness and taxonomic diversity, and through diversity of specific biotic interactions within a food web (e.g. predatory insects provide a regulatory service on pests on agricultural crops). Other more indirect ways in which biodiversity plays a role is through supporting ecosystem functions such as enhancing the efficiency of primary production and decomposition, structuring habitats and landscapes and providing functional diversity through variation in the degree of the expression of multiple functional traits (Maes *et al.* 2013).

Challenges of the ecosystem service approach

As discussed by Busch *et al.* (2012), politicians addressing clearly located subjects regularly prefer to justify political actions that are based on 'concrete' cost-benefit analyses rather than on projected trends of a qualitative assessment. However, undertaking quantitative assessment is usually expensive and time consuming in the absence of good physical or monetary assessment to build upon. The current 'trend' within regulatory agencies to adopt the ecosystem services concept can perhaps be attributed to this preference for definable (in monetary terms) contributions from ecosystems. That being said, attempting to define the services a system (such as a wetland system) provides in relation to humans may be a more effective way of achieving 'buy-in' from its users than previous approaches.

The Millennium Ecosystem Assessment (MEA 2005) has contributed to the use of the ecosystem services concept as a policy tool to achieve the sustainable use of natural resources. However, the MEA didn't propose a fully operational model to implement the concept and as such the term 'ecosystem services' has been redefined and used in many different ways achieving differing aims in a plethora of studies.

Seppelt *et al.* (2011) undertook a quantitative review of ecosystem services studies (using the Web of Science for search terms 'ecosystem service', 'ecosystem services' and 'ecosystem valuation') and located 460 studies in 20 years. However, review by this study has highlighted that there still appears to be some confusion in the academic literature between ecosystem functions and processes as opposed to ecosystem services (Moore & Hunt 2012, Thomsen *et al.*2012, Yang 2011).

Central to the concept of ecosystems services is the ability to define the services in a monetary basis. To quantify and value ecosystem services, The Economics of Ecosystems and Biodiversity (TEEB)

group (2010) suggested a hierarchical typology by separation of ecological processes from the actual benefits dependent upon these processes.

An important difference TEEB adopted was the omission of supporting services, which were seen in TEEB as a subset of ecological processes. Instead, habitat services were identified as a separate category to highlight the importance of ecosystems to provide habitat for migratory species (e.g. as nurseries) and gene-pool "protectors" (e.g. natural habitats allowing natural selection processes to maintain the vitality of the gene pool). The availability of the services was considered directly dependent on the status of the habitat (habitat requirements) providing the service. In cases such as commercial fish and shrimp species, which spawn within estuarine and coastal nursery areas but which also have adults being caught far away, the service has an economic (monetary) value in its own right. The importance of the gene-pool protection service of ecosystems was also recognised, both as "hot spots" for conservation and to maintain the original gene-pool of commercial species (European Commission 2013).

Another key issue that can occur when assigning ecosystem services is the issue of double accounting errors. This is particularly important when mapping the supporting services as distinct from the 'end' final ecosystem services, where there is the potential for double counting errors if an attempt is made to directly value those ecological processes (e.g. weathering, soil formation, nutrient cycling, etc.) support multiple ecosystem services. The concern is that, if both primary ecological processes (functions) and the final ecosystem services that directly generate wellbeing or directly contribute to the production of goods are counted, then we are liable to overestimate the total values generated (Bateman *et al.* 2011).

Among economists the application of monetary values to ecosystem services is debated; for while Constanza *et al.* (1997), Daily *et al.*(2009), TEEB (2010) and Bateman *et al.*(2011) suggest that monetisation is a major step towards ecosystem services preservation, other authors such as Norgaard (2010) and Vatn (2010) suggest it is more appropriate not to apply economic values to ecosystem services especially when related to some of the socio-cultural services (Smith *et al.*2011).

Smith *et al.* (2011) discuss the issues with relating values to ecosystem services, as for some sociocultural services we may wish to give some aspects of the ecosystem infinite value (eg religious significance of a site precludes any change in the area). Bateman *et al.* (2011), however, argued for a strong economic perspective to ecosystem services underpinned by an ecological standard for the scenarios where a value cannot be established (similar to the widely-used concept of multi-criteria analysis).

Barbier (2011) cites good references of valuation studies for key ecosystem services and highlighted that there is an obvious bias to the literature with more valuation attempts for socio-cultural services such as tourism or easily-valued food services than the trickier less-quantifiable services. Tuvendal & Elmqvist (2011) highlighted that, where well-being in relation to wetlands is appreciated by a community, the ecosystem services approach is a useful framework for identifying and connecting stakeholders in the landscape.

Another issue central to the application of the ecosystem services approach is that of spatial scale, with spatial scale being an important determinant of whether an ecological process provides an ecosystem service or not. Generally, within the literature, spatial correlations between ecosystem

services are assumed rather than demonstrated. Syrbe & Walz (2012) examined the spatial characteristics of ecosystem services and argued that the term 'ecosystem services' should be enlarged to 'landscape services' justified by a strong reference to spatial characteristics and a more integrative approach which would take account of neighbouring processes.

One of the key issues with the use of Ecosystem Services to define a system are the potential problems of differences spatially and/or temporally in the same system over time (Lamarque *et al.* 2011; Holland *et al.* 2011). Holland *et al.* (2011) looked at the temporal variation on relationships between ecosystem services with their study highlighting issues of temporally disjunct datasets having the potential to influence conclusions about relationships between services.

Linked to the spatial scale aspect is the problem that most services are not delivered by the ecosystem as a whole, rather by distinct parts of the system. This led to the development of the concept of Service Providing Units (SPU) by authors such as Luck *et al.* (2003). These units represent populations of species that provide the service at a certain temporal or spatial scale. This concept therefore allows a direct link to be made between the service and the part of the ecosystem that provides it.

Ecosystem Services of Wetlands

Inland and coastal wetlands together are estimated to cover a minimum of 12.8 million km2 (Finlayson *et al.*1999). They deliver a range of ecosystem services, i.e. benefits that people obtain from ecosystems (Finlayson et al., 1999; MEA 2005) and the global decrease in estuarine and coastal ecosystems has been shown to affect at least three critical ecosystem services: number of viable fisheries; provision of nursery habitats; and filtering and detoxification services (Worm *et al.*, 2006).

The ecosystem services concept has been utilised to show the true value of wetlands and other ecosystems so that they can be effectively included within development decisions (Barbier 2011). The desire to find the right balance between exploitation of services and their conservation has also led to the concept of 'wise use of wetlands', a more considerate and sustainable approach to living with wetland habitats (Maltby 1991, Ramsar Convention Bureau 2000).

Russi *et al.*(2013) as part of the TEEB works examined the economics of ecosystems and biodiversity for water and wetlands building on the previous TEEB work (2010) and outlined a scheme for describing the ecological character of wetlands in relation to their provision of ecosystem services (refer Table 2 reproduced from Russi *et al.* 2013).

Traditional water management has largely managed the 'blue' component of the water, where blue water is that component that exceeds the soils storage capacity and runs downstream to feed rivers, lakes and aquifers, and largely ignores the green component whereby green waters are defined as the rainfall infiltrated and stored in the soil root zone supporting primary productivity of natural and agricultural systems through evapotranspiration (Falkenmark, 2003). This focus of management on blue water has been termed by Willaarts *et al.*(2012) as 'green water blindness'.

Stratford *et al.* (2011) describes a method developed within a joint Ramsar – WWF led initiative (EU Asia Pro-Eco Programme) that developed an assessment of services provided by the greater

Himalaya wetlands. The work highlighted how remote wetlands are often undervalued and underappreciated as their ecosystem service is spatially removed far from the source.

This spatial dislocation of the service from its underlying processes can also lead to 'offsite effects' (Scharlemann & Laurance 2008), whereby processes underpinning ecosystem services are impacted by systems outside of the specific area (eg 'brown' waters flowing from upstream impacting upon the downstream habitats¹). Tuvendal & Elmqvist (2011) demonstrated how ecosystem processes upstream of a wetland system can impact on ecosystem services downstream with brownification of waters impacting upon the ecosystem services of food (and the provisioning fishery) and hay (by impacting upon the farming).

The size of the wetland system in its own right also required consideration as to the ecosystem services it provides. Smaller wetlands are often overlooked in their contribution to ecosystem services; however Blackwell & Pilgrim (2011) demonstrated that small wetlands (<1 ha) are likely to be significant contributors to delivery of ecosystem services within a system when their cumulative impacts are considered. As such, it is likely many wetlands too small to have been designated for protection in their own right are contained within larger systems and are an over-looked but vital component of that system. Within the CLAMM system it is likely that the smaller wetlands, which appear of lesser value (such as the lagoons when compared to the two lakes), are still providing vital ecosystem services within the broader landscape.

A variety of papers have examined the role coastal habitats play in providing ecosystem services with authors such as Schmidt *et al.*(2011) demonstrating the essential ecosystem services that near-shore coastal plants play in providing habitat, refuges and carbon and/or nitrogen cycling and storage. Barbier *et al.*(2011) reviewed the value of estuarine and coastal ecosystem services for five different coastal ecosystems and highlighted the difficulty in generating dollar values in practise. This difficulty was attributed to the issue of examining a particular habitat's role in isolation for valuation purposes when, (especially in the coastal zone) most habitats and ecosystems have synergistic relationships in which the systems may actually provide 'more than the sum of their parts'.

This difficulty assessing the services was also a key conclusion of the recent Marsden Jacobs Associate (2013) report for the Department of Sustainability, Environment, Water, Population and Communities (DSEWPaC), whereby the authors concluded that making generalisations and accurate valuations of ecosystem services is difficult due to the many influencing factors on the wetlandderived ecosystem service values.

Key to the identification of wetland ecosystem services is the perspective of the reviewer as different communities and individuals may have different expectations of the services a system provides. Holt *et al.*(2011) examined the implementation of the Ecosystem Approach in coastal environments and examined the views of the local residents as to the services they believed their local coastal area provided. The work demonstrated the apparent disagreement between the long-term philosophy of the Ecosystem Approach and the perceived needs of the stakeholder community

¹ In many areas in the northern hemisphere, freshwater systems, and particularly rivers, are deteriorating because of increased levels of dissolved organic carbon (DOC). A visible syndrome of increasing levels of DOC is brownification or browning of water colour. The difference in colour for different water bodies is assumed to be because of differences in vegetation, soils, and the strength of processes such as decomposition and sedimentation (Tuvendal & Elmqvist 2011).

who emphasised a requirement for more immediate benefits that were no longer related to extractive natural resources. Many of the benefits valued were recreational activities related to natural living and enjoyment of the natural environment. The study did note that many of the activities that were valued, however, were underpinned by wildlife and habitats being intact and free from pollution.

A growing body of work has focused on human health issues in a wetland setting. Horwitz & Finlayson (2011) assessed the service wetland ecosystems provide specifically in relation to human health and proposed that Health Impact Assessments should be developed specifically for use by wetland managers. The relationship between human health and provision of socio-cultural ecosystem services in wetlands is, however, outside the scope of this report and as such has not been discussed further.

CSIRO with funding from the SAMDB NRM and the EPA undertook a South Australian Murray-Darling Basin-wide Environmental Values Study (Cast *et al.* 2008). This study undertook extensive interviews with community policy advisors in order to answer the central questions: 'what do you value in the environment and why do you value it?'. As the study was undertaken in 2007/2008 in the middle of the Murray Darling Basin-wide drought, water was a key issue (and ecosystem service) with the overall findings showing that the respondents appeared to value water for how it enhanced their enjoyment of life and supported their continued existence. The report also found that the role of regulatory and supporting services was not highly valued and that there is a disconnect between the articulation of science and the investment process.

An interesting outcome of the study was that the respondents seem to have an easier time discussing natural resources from an ecosystem-service perspective than they did from an asset perspective. This leads to challenges in future examination of ecosystem services within the institutional framework of NRM policy management as they are traditionally grouped into asset categories as opposed to the services that collective assets provide (Cast *et al.* 2008).

Ecological components	Ecological processes	Ecosystem services
Geomorphic setting: in the landscape,	Primary production (S)	Drinking water for humans or livestock (P)
	Nutrient cycling (S)	Water for irrigated agriculture (P)
climate: overview of prevailing climate type, zone, and major features	Carbon cycling	Water for industry (P)
Habitat types	Animal reproductive productivity	Groundwater replenishment (R)
Habitat connectivity	Vegetational productivity, pollination,	Water purification,waste treatment or dilution (R)
Area, boundary, and dimensions: site shape,	role of fire, etc.	Food for humans (P)
ooundaries, area, area of water or wet area, length, width, depth	Notable species interactions, including	Food for livestock (P)
Plant communities, vegetation zones, and	grazing, predation, competition, diseases and pathogens	Wood, reed, fiber, and peat (P)
Animal communities	Notable aspects concerning animal	Medicinal products (P)
	And plant dispersal	Biological control agents for pests or diseases (R)
wain species present	Notable aspects concerning migration	Other products and resources, including genetic mate-
Soll: geology, substrates, soll biology	concerning any of the above or	nai (P)
Water regime: water source, inflow or outflow, evaporation, flooding frequency, seasonality and duration, magnitude of flow or tidal regime, links with groundwater	concerning ecosystem integrity	Flood control, flood storage (R)
		Soil, sediment, and nutrient retention (R)
Connectivity of surface waters and of groundwater		Coastal shoreline and river bank stabilization and storm protection (R)
Stratification and mixing regime		Other hydrological services (R)
Sediment regime		Local climate regulation, buffering of change (R)
Water turbidity and color		Carbon storage or sequestration (R)
Light and attenuation in water		Recreational hunting and fishing (C)
Water temperature		Water sports (C)
Water pH		Nature study pursuits (C)
Water salinity		Other recreation and tourism (C)
Dissolved oxygen in water		Educational values (C)
Dissolved or suspended nutrients in water		Cultural heritage (C)
Dissolved organic carbon		Contemporary cultural significance, including for arts and
Redox potential of water and sediments		Aesthetic and "sense of place" values (C)
Water conductivity		Colitical and collideus values (C)
		Spiritual and religious values (C)

Source: Ramsar Convention 2008, with minor changes. C, cultural ecosystem service; P, provisioning ecosystem service; R, regulating ecosystem service; S, supporting ecosystem service; categorized according to the Millennium Ecosystem Assessment (MA 2005a).

Potential Ecosystem Services of the Coorong and Lower Lakes

The Coorong and Lower Lakes Ramsar Site supports many species and habitats recognised under various National and International designations. Full details are contained with the Ecological Character Description (Phillips & Muller 2006) although a number of these listing are currently being updated. These include:

- Two ecological communities of note in the Coorong and Lakes Ramsar site:
 - 1. Swamps of the Fleurieu Peninsula which are classified as critically endangered
 - 2. Vegetation assemblage of *Gahnia filum* (type of sedgeland) classified as threatened ecosystem
- Seven (7) nationally endangered and vulnerable plant species
- One amphibian (classified as vulnerable)
- Forty-nine (49) species of fish (of which 5 are classified as Nationally or Internationally vulnerable) with twenty (20) of these species utilising the site for critical stages of their life cycle
- Seventy-seven (77) bird species with: three (3) classified as Endangered or Critically Endangered globally or nationally; Five (5) classed as vulnerable in South Australia; fortynine (49) spending their critical life stages in the site; forty-six (46) listed under the Australia migratory bird agreements (Japan or China) or the Convention on Migratory Species, and sixteen (16) that occur in numbers greater than or equal to 1% of the estimated population or sub-population.

The main driver within the Coorong and Lower Lakes system is hydrology and, as summarised within Phillips & Muller (2006), the habitat-scale water regime in the highly-regulated Coorong and Lakes environment has been simplified in many areas to be water-level dependent. Climate and geomorphology define the degree to which the wetlands exist, but the hydrology (and, in turn, the physicochemical environment including soils) determines what and how much biota, including vegetation is found in the wetland (Mitch & Gosselink 2007).

Within the Coorong and Lakes system, the regulated flows affect water levels and physico-chemical changes rather than inducing more natural system responses such as transitions from standing to flowing habitats as natural, dynamic flow regimes would typically exhibit on a seasonal basis. Phillips & Muller (2006) estimated that only 27% of the median natural flows for the Murray Darling System still discharge into the sea and barrage operation was, until recently, the primary level controlling the physico-chemical environment of the Murray Mouth and Coorong lagoons.

The Coorong and Lower Lakes Ramsar Site, although having degraded since designation (a trend that has likely been consistent since the change in land and water use of the MDB with the arrival of European settlers), still provides and underpins many essential ecosystem services both locally and to a wider audience. The Ecological Character Description (ECD) (Phillips & Muller 2006) presented a number of likely ecosystem services for the Coorong and Lower Lakes Ramsar Site. The Ecosystem Services as listed within the ECD appear reasonable however little scientific evidence was presented and there was some confusion between final and intermediate services (in the details section particularly). Butcher (2011) undertook a review of the ECD in light of updated thinking on the contents of an ECD and supplemented the detailed list of services provided by the Coorong and Lower Lakes system (refer Table 3 below).

Phillips & Muller (2006)		Butcher (2011)
Ecosystem Service	Details	Ecosystem Service
Provisioning Services	•	•
Wetland Products	Water source for irrigators (horticulture,	Irrigation
	viticulture)	
	Commercial and recreational fisheries	Provision of aquatic foods for
	Goolwa Cockle fishery	human consumption
	Drinking water supply	Drinking Water
Regulating Services		
Maintenance of	Flood mitigation	Maintenance and regulation of
hydrological stability		hydrological regimes
Water purification	Groundwater interactions	
	Removal and dilution of wastewaters from	
	irrigation areas, urban areas and septic tanks	
Coastal shoreline and	Reduce impact of wind and wave action and	
bank stabilisation	currents	
	Prevent erosion by holding sediments with	
	plant roots	
Sediment and	Flood retardation and sediment and nutrient	
nutrient retention	deposition	
Local climate	Local climate stabilisation, particularly in	
regulation	relation to rainfall and temperature	
Climate change	Sequestering of carbon	
mitigation		
Biological control of	Support of predators of agricultural pests	
pest and diseases	(e.g. ibis feeding on grasshoppers)	
Cultural Services		
Recreation and	Boating and water-skiing	Recreation
tourism		
	Bird watching and sightseeing	Tourism
	Swimming, picnicking and camping	
	Fishing	
Cultural values	Aesthetics, amenity	Cultural heritage and identity
	Cultural and spiritual significance for the	Spiritual and inspirational
	Ngarrindjeri people	
	Educational and research site	
Supporting Services		
Food web support	Nutrient cycling	
	Primary ecosystem production	
Ecological values	Representative of a unique ecosystem	Ecological connectivity
	(globally, nationally and regionally)	
	Supports a large variety of ecological	
	communities	
	Supports a number of globally and nationally	Supports threatened species
	threatened species and communities	(nationally/internationally listed –
		not necessarily all critical –
		southern bell frog, southern emu
		wren and orange-bellied parrot)
	Supports a high diversity of species and	Supports a diversity of wetland
	assemblages important for conserving	types (extent and diversity)
	biodiversity at the bioregional scale	
		Supports priority wetland species
		Supports distinct or unique
		wetland species (e.g. Ruppia)

	Biodiversity (includes state listed species, but not limited to these)
Supports animal taxa at critical stages of their lifecycle and during drought	Special physical, ecological or geomorphic features (critical life stages and drought)
Supports significant numbers and diversity of wetland-dependent birds, including migratory species listed under the JAMBA and CAMBA agreements	Provides physical habitat for waterbird and fish breeding and feeding
Supports significant numbers and diversity of native fish, including migratory species	

Table 3: Ecosystem services as listed by Phillips & Muller (2006) compared with those listed by Butcher (2011)

Although Butcher (2011) refines the likely ecosystem services provided within the Ecological Character Description (Phillips & Muller 2006), all services were generally included within the ECD. As such, it is assumed that the ecosystem services listed by these authors are appropriate but require more definitive substantiation as well as careful defining for their specific unit to provide guidance as part of an updated ECD Report. For example defining wetland products within a Lake Alexandrina context as these may differ to those in the South Lagoon of the Coorong.

For ease, the Coorong and Lower Lakes have been broadly separated and discussed in relation to the areas defined by the Ramsar designation and ECD (Phillips & Muller 2006): the three freshwater areas Lake Alexandrina; Lake Albert and the Tributaries, and the 3 saline influenced areas; the Murray Mouth and Estuary; North Lagoon and South Lagoon. It is envisaged that any functional or process assessment will break down these units further (likely into hydrographical sub-units).

Table 4 presents the potential ecosystem services supported by each of the Coorong and Lakes Ramsar Site management unit (note, due to few differences in ecosystem services between Lake Alexandrina and Albert these are grouped together to avoid repetition). Appendix 1 builds upon Table 4 but also outlines the current status since Ramsar designation, the key underlying processes and the direct local evidence (where available) that the ecosystem process is operating within that system.

Table 4: Potential ecosystem services supported by each of the Coorong and Lakes Ramsar Sitemanagement units

Lake Alexandrina and Lake Albert			
We (as	tland type located within unit described in Phillips & Muller	Ecosystem service	Details of Ecosystem Service at Ramsar designation (1985)
(20	Bocky marina sharas	Watland Products	Irrigation water
•	Sand shingle or pabble		Drinking Water
•	sona, sinngle of people		Uninking water (Lake Alexandring only)
	Bormanant		Commercial and reare ational fisheries
•	rivers (streams (creeks		
	Seasonal/intermittent/irregular		
•	rivers/streams/creeks		Reeds and grasses for fraditional crafts
	Permanent freshwater lakes		Iraditional Ngarrinajeri tood species
	Seasonal/intermittent		(eggs, birds, fish, yabbles)
-	freshwater lakes	Maintenance of	Flood mitigation
	Seasonal/intermittent	nyarological stability	Groundwater Interactions
-	saline/brackish/alkaline lakes	Water purification	Removal and dilution of wastewaters
	and flats		form irrigation areas, urban areas and
•	Seasonal/intermittent		septic tanks
	saline/brackish/alkaline	Coastal shoreline and	Reduce impacts of wind and wave
	marshes/pools	bank stabilisation	action and currents
•	Permanent freshwater		Prevent erosion by holding sediments with plant roots
	Social (intermittant	Sediment and	Flood retardation and sediment and
•	freshwater marshes (pools	nutrient retention	nutrient deposition
	Shrub-dominated wetlands	Local climate	Local climate stabilisation, particularly in
	Freshwater, tree-dominated	regulation	relation to rainfall and temperature
	wetlands	Climate change mitiaation	Sequestering and cycling of carbon
•	agricultural land	Biological control of pest and diseases	Support of predators of agricultural pests
•	channels ditches	Recreation and	Boating and water skiing
	charmels, anches.	tourism	Fishing
			Bird watching and sightseeing
			Swimming, picnicking and camping
			Wine & food related tourism
		Food web support	Nutrient cycling
			Primary ecosystem production
		Ecological values	Representative of a unique ecosystem
		-	(globally, national and regionally)
			Supports a large variety of ecological
			communities
			Supports a number of globally and
			nationally threatened species and
			communities
			Supports a high diversity of species and
			assemblages important for conserving
			biodiversity at the bioregional scale
			Supports animal taxa at critical stages of
			their lifecycle and during drought
			Supports significant numbers and diversity
			of wetland-dependent birds including
			migratory species listed under the JAMBA
			and CAMBA agreements
			Supports significant numbers and diversity
			of native fish, including migratory species.

Cultural values [#] Aesthetics, amenity	
	Cultural and spiritual significance for the
	Ngarrindjeri people
	Educational and research site

Tributaries		
Wetland type located within unit (as described in Phillips & Muller (2006)	Ecosystem service	Details of Ecosystem Service at Ramsar designation (1985)
Permanent	Wetland Products	Irrigation water
rivers/streams/creeksPermanent freshwater lakes		Drinking Water
 Seasonal/intermittent 		Commercial and recreational fisheries
saline/brackish/alkaline		Grazing
marshes/pools		Reeds and grasses for traditional crafts
 Permanent freshwater marshes/pools 		Traditional Ngarrindjeri food species (eggs, birds,fish, yabbies)
 Seasonal/intermittent 	Maintenance of	Flood mitigation
freshwater marshes/pools	hydrological stability	Groundwater interactions
Freshwater, tree-dominated	Water purification	Removal and dilution of wastewaters
wetlandsSeasonally flooded		form irrigation areas, urban areas and septic tanks
agricultural land	River bank	Prevent erosion by holding sediments with
Water storage areas	stabilisation	plant roots
Canais and arainage channels ditches	Sediment and	Flood retardation and sediment and
channeis, aliches.	nutrient retention	nutrient deposition
	Local climate	Local climate stabilisation, particularly in
	regulation	relation to rainfall and temperature
	Climate change mitigation	Sequestering and cycling of carbon
	Biological control of pest and diseases	Support of predators of agricultural pests
	Recreation and	Boating and water skiing
	tourism	Fishing
		Bird watching and sightseeing
		Swimming, picnicking and camping
		Wine and food tourism
	Food web support	Nutrient cycling
		Primary ecosystem production
	Ecological values	Representative of a unique ecosystem
		(globally, national and regionally)
		Supports a large variety of ecological
		communities
		Supports a number of globally and nationally threatened species and
		Supports a high diversity of species and
		assemblages important for conserving biodiversity at the bioregional scale
		Supports animal taxa at critical stages of their lifecycle and during drought
		Supports significant numbers and diversity
		of wetland-dependent birds including
		migratory species listed under the JAMBA
		and CAMBA agreements

[#] Cultural value ecosystem services have not been discussed further within this document as they are being considered elsewhere under a socio-cultural review currently in progress by CSIRO for the MDBA.

	Supports significant numbers and diversity of native fish, including migratory species.
Cultural values [#]	Aesthetics, amenity
	Cultural and spiritual significance for the
	Ngarrindjeri people
	Educational and research site

Murray Mouth & Estuaries			
Wetland type located within unit (as described in Phillips & Muller (2006)	Ecosystem service	Details of Ecosystem Service at Ramsar designation (1985)	
 Permanent shallow marine waters Rocky marine shores 	Wetland Products	Commercial and recreational fisheries	
 Sand, shingle or pebble shores 		Commercial cockle industry	
Estuarine watersIntertidal mud, sand or salt flats		Reeds and grasses for traditional crafts	
 Intertidal marshes Intertidal forested wetlands Coastal brackish/saline lagoons 		Traditional Ngarrindjeri food species (eggs, birds,fish, yabbies)	
Coastal freshwater lagoons	Maintenance of hydrological stability	Flood mitigation	
	Water purification	Removal and dilution of wastewaters form irrigation areas, urban areas and septic tanks	
	Coastal shoreline and bank	Reduce impacts of wind and wave action and currents	
	stabilisation	Prevent erosion by holding sediments with plant roots	
	Sediment and nutrient retention	Flood retardation and sediment and nutrient deposition	
	Biological control of pest and diseases	Support of predators of agricultural pests	
	Recreation and	Boating and water skiing	
	tourism	Fishing	
		Bird watching and sightseeing	
		Swimming, picnicking and	
		camping	
	Food web support	Nutrient cycling	
	Ecological values	Primary ecosystem production	
		ecosystem (globally, national and regionally)	
		Supports a large variety of ecological communities	
		Supports a number of globally and nationally threatened species and communities	
		Supports a high diversity of species and assemblages important for conserving biodiversity at the bioregional scale	

[#] Cultural value ecosystem services have not been discussed further within this document as they are being considered elsewhere under a socio-cultural review currently in progress by CSIRO for the MDBA.

	Supports animal taxa at critical stages of their lifecycle and during drought Supports significant numbers and diversity of wetland- dependent birds including migratory species listed under the JAMBA and CAMBA agreements Supports significant numbers and diversity of native fish.
	including migratory species.
Cultural values [#]	Aesthetics, amenity
	Cultural and spiritual
	significance for the
	Ngarrindjeri people
	Educational and research site

North Lagoon				
Wetland type located within unit (as described in Phillips & Muller (2006)	Ecosystem service	Details of Ecosystem Service at Ramsar designation (1985)		
Rocky marine shores	Wetland Products	Drinking Water		
 Sand, shingle or pebble shores Intertidal mud, sand or salt flats 		Commercial and recreational fisheries		
 Intertidal marshes 		Grazing		
 Coastal brackish/saline lagoons Coastal freshwater lagoons 		Reeds and grasses for traditional crafts		
		Traditional Ngarrindjeri food species (eggs, birds,fish, yabbies)		
	Maintenance of	Flood mitigation		
	hydrological stability	Groundwater interactions		
	Water purification	Removal and dilution of wastewaters form irrigation areas, urban areas and septic tanks		
	Coastal shoreline and bank	Reduce impacts of wind and wave action and currents		
	stabilisation	Prevent erosion by holding sediments with plant roots		
	Sediment and nutrient retention	Flood retardation and sediment and nutrient deposition		
	Local climate regulation	Local climate stabilisation, particularly in relation to rainfall and temperature		
	Climate change mitigation	Sequestering and cycling of carbon		
	Biological control of pest and diseases	Support of predators of agricultural pests		
	Recreation and	Boating and water skiing		
	tourism	Fishing		
		Bird watching and sightseeing		
		Swimming, picnicking and camping		

[#] Cultural value ecosystem services have not been discussed further within this document as they are being considered elsewhere under a socio-cultural review currently in progress by CSIRO for the MDBA.

	Food web support	Nutrient cycling
		Primary ecosystem production
	Ecological values	Representative of a unique
		ecosystem (globally, national
		and regionally)
		Supports a large variety of
		ecological communities
		Supports a number of globally
		and nationally threatened
		species and communities
		Supports a high diversity of
		species and assemblages
		important for conserving
		biodiversity at the bioregional
		scale
		Supports animal taxa at
		critical stages of their lifecycle
		and during drought
		Supports significant numbers
		and diversity of wetland-
		dependent birds including
		migratory species listed under
		the JAMBA and CAMBA
		agreements
		Supports significant numbers
		and diversity of hative tish,
	<u> </u>	Including migratory species.
	Cultural values"	Aesthetics, amenity
		Cultural and spiritual
		significance for the
		Eaucational and research sife

South Lagoon				
Wetland type located within unit (as described in Phillips & Muller (2006)	Ecosystem service	Details of Ecosystem Service at Ramsar designation (1985)		
Rocky marine shores	Wetland Products	Drinking Water		
 Sand, shingle or pebble shores 		Commercial and recreational		
 Intertidal mud, sand or salt flats 		fisheries		
Coastal brackish/saline lagoons		Grazing		
Permanent rivers/streams/creeks		Reeds and grasses for		
Seasonal/intermittent		traditional crafts		
saline/brackish/alkaline lakes and flats		Traditional Ngarrindjeri food		
Seasonal/intermittent		species (eggs, birds,fish,		
saline/brackisn/alkaline marsnes/pools		yabbies)		
Shrub-dominated wetlands	Maintenance of	Flood mitigation		
Freshwater, free-dominated weilands	hydrological			
• Freshwater springs, oases	stability			
		Groundwater interactions		
	Water purification	Removal and dilution of		
		wastewaters form irrigation		
		areas, urban areas and septic		
		tanks		
	Coastal shoreline	Reduce impacts of wind and		
	and bank	wave action and currents		

[#] Cultural value ecosystem services have not been discussed further within this document as they are being considered elsewhere under a socio-cultural review currently in progress by CSIRO for the MDBA.

stabilisation	Prevent erosion by holding
	sealments with plant roots
Sediment and	Flood retardation and
nutrient retention	sediment and nutrient
	deposition
Local climate	Local climate stabilisation,
regulation	particularly in relation to
	rainfall and temperature
Climate change	Sequestering and cycling of
mitigation	carbon
Biological control of	Support of predators of
pest and diseases	agricultural pests
Recreation and	Boating and water skiing
tourism	Fishing
	Bird watching and sightseeing
	Swimming, picnicking and
	campina
Food web support	Nutrient cycling
	Primary ecosystem production
Ecological values	Representative of a unique
	ecosystem (alobally national
	and regionally)
	Supports a large variety of
	Supports a number of alobally
	and nationally threatened
	species and communities
	Supports a high divorsity of
	species and assemblages
	important for conserving
	hindiversity at the bioregional
	biodiversity of the bioregional
	Scule
	supports animal raxa at
	childer stages of their lifecycle
	Supports signific grat aurabian
	supports significant numbers
	and diversity of wetland-
	dependent birds including
	migratory species listed under
	The JAMBA and CAMBA
	agreements
	supports significant numbers
	and diversity of native fish,
• • • • • •	including migratory species.
Cultural values*	Aesthetics, amenity
	Cultural and spiritual
	significance for the
	Ngarrindjeri people
	Educational and research site

[#] Cultural value ecosystem services have not been discussed further within this document as they are being considered elsewhere under a socio-cultural review currently in progress by CSIRO for the MDBA.

Where to from here?

Lambert (2003) proposed a framework for assessment of ecosystem services in wetlands (simplified and adapted in Figure 2) which presents a transparent and clear way of evaluating wetland ecosystem services. This framework, if applied to the Coorong and Lower Lakes system, essentially comprises two distinct components of work for the future building upon the ecosystem services preliminarily identified within this report (which can be considered as 'wetland uses'):

- 1. Wetland Functioning: Identification and research into fundamental ecology components, and
- 2. Wetland Values: applying values to the direct, indirect and non-use aspects of the system.

Figure 2 – Framework for assessment of Coorong and Lower Lakes Ramsar Site ecosystem services (building upon proposed ecosystem services)

Marsden Jacobs Associates (2013) undertook a limited qualitative assessment of the degree of confluence between Ramsar criteria and the degree to which wetlands meeting the specific Ramsar criteria might provide specific ecosystem services. This approach, whilst interesting, provides little relevant information and highlights the issue with retrospectively applying 'trend' concepts and theories. The designation of Ramsar status was not intended to be as a tool to support or protect ecosystem services and often, as its primary purpose is/was biodiversity conservation in relation to migratory birds and their supporting habitats, it can be at odds with those seeking to maintain or maximise ecosystem services.

Data Collation and Gap Analysis

This report has briefly examined the ecosystem services provided by the Coorong and Lakes Alexandrina and Albert Ramsar site provides and examined where information was available and some of the gaps within the currently held data. To give an accurate assessment of the 'wetland functioning' it will be essential to undertake a full data collation and review (which will, by default, provide the information for a gap analysis exercise). This will allow information requirements to be characterised and identified in key areas. Broadspread constraints on monitoring budgets mean that baseline monitoring programs will need to be focussed. Whether this data collation and analysis can be undertaken as part of a larger Murray Darling Basin meta-data collation exercise should be considered in terms of potential cost savings, as it is likely all areas within the MDB will need to undertake a similar exercise.

Once the data collation and review has been completed, consideration will need to be given to how appropriate existing monitoring programs are in evaluating the ecosystem services (now and into the future. Geijzendorffer and Roche (2013) examined whether biodiversity monitoring schemes can provide indicators for ecosystem services. The authors concluded that generally well-designed biodiversity studies can be utilised but that there is a knowledge bias towards ecosystem services that have a direct link to ecological functions (as also demonstrated by Cardinale *et al.*2012). It is probable that those more well-established monitoring programs with many broad parameters will offer the most benefit to future monitoring programs but this will become more apparent through the gap analysis exercise.

To gain a complete understanding of 'wetland values', future works will need to build upon previous work undertaken within the Coorong and Lower Lakes. Hatton MacDonald *et al.*(2011) undertook a nonmarket valuation study utilising surveys to explore the values held by Australians for changes to a range of environmental attributes within the Murray River, including waterbird habitat in the Coorong. Although the paper will need revisiting (a key issue of the paper was that it undertaken during the period of drought), it does provide some indication of 'willingness to pay' (WTP) values for the system which will aid in applying 'wetland values'.

Functional Assessment Protocol for the Coorong and Lower Lakes

The Murray Darling Basin Authority (MDBA) and the South Australian Department of Environment, Water and Natural Resources (DEWNR) have recently held a workshop to begin to discuss an approach for undertaking a functional assessment protocol (FAP) of the Coorong and Lower Lakes Ramsar Site. It is anticipated that this will incorporate the research previously undertaken in the system (including the large amount of work undertaken for the CLLAMMecology projects). The FAP is likely to build upon existing work from the UK under the National Ecosystem Assessment on Hydrogeomorphic Management Unit (HGMU) assessment of wetlands. The FAP will need to be adapted to apply to Australian systems, but it offers a clear foundation on which to build a future assessment tool.

Conclusion

This report briefly discussed the ecosystem services concept and through application of the broad MEA (2005) classifications has provided an evidence-based list of ecosystem services for the Coorong and Lower Lakes Ramsar Site. These ecosystem services have been gleaned from a literature review and are expressed in terms of management units.

Many ecosystem services are provided by the Coorong and Lower Lakes Ramsar Site, such as the support of internationally and nationally important bird species through the provision of food and habitat. Outside of the traditionally-recognised services to wildlife though, it is also apparent that the services provided in terms of wetland products (such as drinking water, traditional food sources, irrigation waters and grazing areas) are also critical ecosystem services.

Future works will need to focus on collating and analysing the current available information as well as supplementing the information gaps. One proposed approach is through the application of a functional assessment protocol methodology as well as setting up a framework to monitor these processes into the future.

A future discussion is required as to whether the application of the ecosystem services concept to the Coorong and Lower Lakes Ramsar site is applicable to the wider Murray Darling Basin system. Although this approach could theoretically apply to any wetland site, it may be that the unique 'end of the line' nature of the Coorong and Lower Lakes (with predominantly one-directional influencing processes) and its plethora of different habitats render this system incomparable to that of the rest of the MDB.

References

Aldridge, K.T.;Deegan, B.M.;Lamontagne, S.;Bissett, A. and Brookes, J.D. (2009).*Spatial and temporal changes in water quality and sediment character in Lake Alexandrina and Lake Albert during a period of rapid water level drawdown*. CSIRO: Water for a Healthy Country National Research Flagship, Canberra.

Barbier E. B. (2011). Wetlands as natural assets. Hydrological Sciences Journal 56 (8): 1360-1373.

Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C. and Silliman, B.R. (2011). *The value of estuarine and coastal ecosystem services*. Ecological Monographs 81(2):169–193.

Bateman, I.J.; Mace, G.M.; Fezzi, C.; Atkinson, G. and Turner, K. (2011). *Economic analysis for ecosystem service assessments*. Environmental and Resource and Economics 48(2): 177–218.

Blackwell, M.S.A. and Pilgrim, E.S. (2011).*Ecosystem services delivered by small-scale wetlands*. Hydrological Sciences Journal 56(8):1467-1484.

Busch, M.; La Notte, A.; Laporte, V. and Erhard, M. (2012).Potentials of quantitative and qualitative approaches to assessing ecosystem services. Ecological Indicators 21:89–103.

Butcher, R.J. (2011).*Technical review of The Coorong, Lakes Alexandrina and Albert Ecological Character Description*.Prepared for the Department of Environment and Natural Resources, South Australia.

Cann, J.H., Bourman, R.P., Barnett, E.J. (2000). *Holocene Foraminifera as indicators of relative estuarine-lagoonal and oceanic influences in estuarine sediments of the River Murray, South Australia*. Quaternary Research, 53: (pp 378-391)

Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D., and Naeem, S. (2012). *Biodiversity loss and its impact on humanity*. Nature, 486:59-67.

Cast, A., Hatton MacDonald, D., Grandgirard, A., Kalivas, T., Stratheran, S., Sanderson, M., Bryan, B. and Frahm D. (2008). *South Australian Murray-Darling Basin Environmental Values Report*. CSIRO: Water for a Healthy Country National Research Flagship.

Clark, J.S.; Carpenter, S.R.; Barber, M.; Collins, S.; Dobson, A.; Foley, J.A.; Lodge, D.M.; Pascual, M.; Pielke, R.; Pizer, W.; Pringle, C. and Reid, W.V.; Rose, K.A.; Sala, O.; Schlesinger, W.H.; Wall, D.H. and Wear, D. (2001) *Ecological forecasts: an emerging imperative*. Science, 293:657–660.

Common International Classification of Ecosystem Services (CICES), (2013). <u>http://cices.eu/</u>. European Environment Agency.

Cook, P.L.M.; Aldridge, K.T.; Lamontagne, S. and Brookes, J.D. (2008) *Element and nutrient mass-balance in a large semi-arid riverine lake system (the Lower Lakes, South Australia)*.CSIRO: Water for a Healthy Country National Research Flagship, Canberra.

Costanza, R.; d'Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O'Neill, R.V.; Paruelo, J.; Raskin, R.G.; Sutton, P. and van den Belt, M. (1997). *The value of the world's ecosystem services and natural capital.* Nature 387:253-259.

Daily, G. E. (1997). *Nature's Services – Societal Dependence on Natural Ecosystems*. Island Press, Washington.

Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.; Pejchar, L.; Ricketts, T.H.; Salzman, J. and Shallenberger, R. (2009). *Ecosystem services in decision making: time to deliver*. Frontiers in Ecology and the Environment 7: 21–28.

de Groot, R.; Stuip, M.; Finlayson, M. and Davidson, N. (2006). *Valuing wetlands: guidance for valuing the benefits derived from wetland ecosystem services*. Ramsar Technical Report No 3, CBD Technical Series No 27, <u>www.cbd.int/doc/publications/cbd-ts-27.pdf</u>.

Deegan, B.M.;Lamontagne, S.; Aldridge, K.T. and Brookes, J.D. (2009) *Trophodynamicsof the Coorong*. Water for a Healthy Country National Research Flagship, Canberra.

Department of the Environment, Water, Heritage and the Arts (2008). *National Framework and Guidance for Describing the Ecological Character of Australia's Ramsar Wetlands. Module 2 of the National Guidelines for Ramsar Wetlands— Implementing the Ramsar Convention in Australia.* Australian Government Department of the Environment, Water, Heritage and the Arts, Canberra.

DEWNR 2013 <u>http://www.waterforgood.sa.gov.au/rivers-reservoirs-aquifers/lower-lakes-coorong/murray-mouth-sand-pumping-project/</u>

EASAC (The European Academies Science Advisory Council),(2009). *Ecosystem services and biodiversity in Europe*.EASAC policy report 09.

Econsearch (2011).*Economic profile of the River Murray Region of South Australia, 2006/07.* Report prepared for Primary Industries and Resources South Australia.

European Commission (2013).*Mapping and assessment of ecosystems and their services: An analytical framework for ecosystem assessments under Action 5 of the EU Biodiversity Strategy to 2020*. Discussion Paper – Final April 2013.

Falkenmark, M., 2003.*Freshwater as shared between society and ecosystems: from divided approaches to integrated challenges*.Philosophical transactions of the Royal Society Biological Sciences 358:2037–2049.

Ferguson, G. (2012). *The South Australian Lankes and Coorong Fishery.Fishery Stock Status Report for PIRSA Fisheries and Aquaculture*.South Australian Research and Development Institute (Aquatic Sceinces), Adelaide.SARDI Publication No. F2009/000669-3 SARDI Research Report No. 598. 17pp.

Fernandes, M. and Tanner, J. (2009) *Hypersalinity and phosphorus availability: the role of mineral precipitation in the Coorong lagoons of South Australia*. CSIRO: Water for a Healthy Country Research Flagship.

Finlayson C.M.; Davidson N.C.; Spiers A.G. and Stevenson N.J. (1999).*Global wetland inventory* – *current status and future priorities*. Marine & Freshwater Research 50:717-727.

Ford, P.W. (2007) *Biogeochemistry of the Coorong: Review and identification of future research requirements.* CSIRO: Water for a Healthy Country Research Flagship.

Geijzendorffer, I.R. and Roche, P.K. (2013).*Can biodiversity monitoring schemes provide indicators for ecosystem services?* Ecological Indicators http://dx.doi.org/10.1016/j.ecolind.2013.03.010

Gillanders, B.M. and Munro, A.R. (2009).*Relationships between water chemistry, otolith chemistry and salinity of a hypersaline system: implications for determining past environmental history of fish.* CSIRO: Water for a Healthy Country National Research Flagship, Canberra.

Grigg, N.J.; Robson, B.J. and Webster, I.T. (2009).*Nutrient Budgets and Biogeochemical Modelling of the Coorong*.CSIRO: Water for a Healthy Country Research Flagship. Canberra.

Haese, R.; Murray, E. and Wallace, L. (2009).*Nutrient sources, water quality, and biogeochemical processes in the Coorong, South Australia*.Geoscience Australia Record 2009/19. Canberra.

Haines-Young, R.H. & Potschin, M.P. (2010) *The links between biodiversity, ecosystem services and human wellbeing in Ecosystem Ecology: a new synthesis.* Eds Raffaelli DG & Frid CLJ (Cambridge University Press).

Hatton MacDonald, D.; Morrison, M.; Rose, J. and Boyle, K. (2011). *Valuing a Multi-state River: The Case of the River Murray*. Australian Journal of Agricultural and Resource Economics 55(3): 374-392.

Holland, R. A.; Eigenbrod, F.; Armsworth, P.R.; Anderson, B.J.; Thomas, C.D. and Gaston, K.J. (2011).*The influence of temporal variation on relationships between ecosystem services*. Biodiversity and Conservation 20 (14): 3285-3294.

Holt, A.R.; Godbold, J.A.; White, P.C.L.; S, A.; Pereira, E.G. and Solan, M. (2011).*Mismatches between legislative frameworks and benefits restrict the implementation of the Ecosystem Approach in coastal environments*. Marine Ecology Progress Series 434: 213–228.

Hooper, D.U.; Chapin III, F. S.; Ewel, J. J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J. H.; Lodge, D. M.; Loreau, M.; Naeem, S.; Schmid, B.; Setälä, H.; Symstad, A. J.; Vandermeer, J. and Wardle, D. A. (2005). *Effects of biodiversity on ecosystem functioning: a consensus of current knowledge.* Ecological Monographs 75:3–35

Horwitz, P. and Finlayson, C.M. (2011). *Wetlands as settings for human health: Incorporating ecosystem services and health impact assessment into water resource management.* Bioscience 61(9):678-688.

Krull, E.; Lamontagne, S.; Haynes, D.; Broos, K.; McKirdy, D.; McGowan, J.; Gell, P. and Wakelin, S. (2008). *Changes in organic matter chemistry in the Coorong lagoons over space and time: A pilot study.* CSIRO: Water for a Healthy Country Research Flagship. Canberra.

Krull, E.; Haynes, D.; Lamontagne, S.; Gell, P.; McKirdy, D.; McGowan, J. and Smernik, R. (2009).*Changes in the chemistry of sedimentary organic matter within the Coorong over space and time*. Biogeochemistry 92: 9-25.

Lamarque, P.; Quetier, F. and Lavorel, S.(2011). *The diversity of the ecosystem services concept and its implications for their assessment and management*.ComptesRendusBiologies334(5-6 SI): 441-449.

Lambert, A. (2003).*Economic Valuation of Wetlands: an Important Component of Wetland Management Strategies at the River Basin Scale.* United Nations Environmental Protection South China Sea, Project (UNEPSCS). Accessed 5 July,

2013.<u>http://www.unepscs.org/Economic_Valuation_Training_Materials/06%20Readings%20on%20E</u> <u>conomic%20Valuation%20of%20Coastal%20Habitats/07-Economic-Valuation-Wetlands-</u> <u>Management.pdf</u>

Lamontagne, S.; McEwan, K.; Webster, I.; Ford, P.; Leaney, F. and Walker, G. (2004).*Coorong, Lower Lakes and Murray Mouth: Knowledge gaps and knowledge needs for delivering better ecological outcomes.* CSIRO: Water for a Healthy Country National Research Flagship. Canberra.

Lamontagne, S.; Geddes, M.C.; Fernandes, M. and Krull, E. (2007).*Analysis of fish diet from the Murray Estuary using C, N and S stable isotopes*.Water for a Healthy Country National Research Flagship, Canberra.

Langley, R.A.; Lester, R.E.; Fairweather, P.G. and Webster, I.T. (2009).*Predicting the future ecological condition of the Coorong: Supplementary output from scenario modelling*. CSIRO: Water for a Healthy Country National Research Flagship, Canberra.

Lester, R.E. and Fairweather, P.G. (2008).*Review of modelling alternatives for CLLAMM Futures*.CSIRO: Water for a Healthy Country National Research Flagship, Canberra.

Lester, R.E. and Fairweather, P.G. (2009).*An ecosystem response model: Method development and sensitivity analysis.* CSIRO: Water for a Healthy Country National Research Flagship, Canberra.

Lester R.E.; Webster I.T.; Fairweather, P.G. and Langley, R.A. (2009).*Predicting the future ecological condition of the Coorong: The effect of management actions and climate change scenarios*. Finders University, Adelaide.

Luck, G.W.; Daily, G.C. and Ehrlich, P.R. (2003). *Population diversity and ecosystem services*. Trends Ecological Evolution 18:331–336.

Mace, G. M.; Norris, K.; Fitter, A.H., (2012).*Biodiversity & ecosystem services: a multilayered relationship*. Trends in ecology & evolution 27 (1): 19-26.

Maes, J, Teller, A., Erhard, M., Liquete, C., Braat, J., Berry, P., Egoh, B., Puydarrieux, P., Fiorina, C., Santos, F., Paracchini, M.L., Keune, H., Wittmer, H., Hauck, J., Fiala, I., Verburg, P.H., Condé, S., Schägner, J.P., San Miguel, J., Estreguil, C., Ostermann, O., Barredo, J.I., Pereira, H.M., Stott, A., Laporte, V., Meiner, A., Olah, B., Royo Gelabert, E., Spyropoulou, R., Petersen, J.E., Maguire, C., Zal, N., Achilleos, E., Rubin, A., Ledoux, L., Brown, C., Raes, C., Jacobs, S., Vandewalle, M., Connor, D., Bidoglio, G. (2013). *Mapping and Assessment of Ecosystems and their Services. An analytical* *framework for ecosystem assessments under action 5 of the EU biodiversity strategy to 2020.* Publications office of the European Union, Luxembourg.

Maltby, E. (1991). *Wetland management goals: wise use and conservation*. Landscape and Urban Planning 20:9-18.

Marsden Jacob Associates (2012).*Literature Review of the Economic Value of Ecosystem Services that Wetlands Provide*.Final Report for the Department of Sustainability, Environment, Water, Population and Communities.

MEA (Millennium Ecosystem Assessment), (2005). *Ecosystems and human well-being: a framework for assessment*. Washington, DC: Island Press.

Mitch, W.J. and Gosselink, J.G. (2007). Wetlands. 4th Edition.

Moore, T.L.C. and Hunt, W.F. (2012). *Ecosystem service provision by stormwater wetlands and ponds* - A means for evaluation?. Water Research 46:6811-6823.

Nayar, S, and Loo, M.G.K. (2009).*Phytoplankton and phytobenthic productivity along a salinity gradient in the Coorong and Murray Mouth*. CSIRO: Water for a Healthy Country Research Flagship and South Australian Research and Development Institute (Aquatic Sciences). Adelaide.

Nicol, J. (2005). *The ecology of <u>Ruppia</u> spp. in South Australia with reference to the Coorong*. South Australian Research and Development Institute (Aquatic Sceinces), Adelaide. SARDI Publications Number RD04/0247-2.

Noell, C.J.; Ye, Q.; Short, D.A.; Bucater, L.B. and Wellman, N.R. (2009).*Fish assemblages of the Murray Mouth and Coorong region, South Australia, during and extended drought period*. CSIRO: Water for a Healthy Country National Research Flagship, Canberra.

Norgaard, R.B. (2010). *Ecosystem services: From eye-opening metaphor to complexity blinder*. Ecological Economics 69(6): 1219–1227.

Norris, K. (2012). *Biodiversity in the context of ecosystem services: the applied need for systems approaches*. Philosophical Transactions of the Royal Society Biological Sciences 367:191-199.

Oborne, J. (2003). *Ecological requirements of the Coorong.* Paper prepared for the Department of Water, Land and Biodiversity Conservation, Adelaide.

Paton, D.C.; Rogers, D.J.; Hill, B.M.; Bailey, C.P. and Ziembicki, M.M. (2009). *Temporal changes to spatially stratified waterbird communities of the Coorong, South Australia: implications for the management of heterogeneous wetlands*. Animal Conservation 12(5): 408-417.

Phillips, W. and Muller, K. (2006). *Ecological Character of the Coorong, Lakes Alexandrina and Albert Wetland of International Importance*. South Australian Department for Environment and Heritage.

Ramsar Convention (2008).Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance of the Convention on Wetlands (Ramsar, Iran, 1971). Third edition, as adopted by Resolution VII.11 (COP7, 1999) and amended by Resolutions VII.13

(1999), VIII.11 and VIII.33 (COP8, 2002), IX.1 Annexes A and B (COP9, 2005), and X.20 (COP10, 2008). http://www.ramsar.org

Ramsar Convention Bureau (2000). *The Ramsar Convention on Wetlands*. http://www.ramsar.org/. Ramsar Convention Bureau. (November 2000).

Revill, A.T.; Leeming, R.; Volkman, J.K. and Clementson, L. (2009). *Sources of Organic Matter in the Coorong.* CSIRO: Water for a Healthy Country National Research Flagship, Canberra.

Rogers, D.J. and Paton, D.C. (2009).*Changes in the distribution and abundance of <u>Ruppiatuberosa</u> in <i>the Coorong*.CSIRO: Water for a Healthy Country National Research Flagship, Canberra

Rolston, A. and Dittmann, S. (2009). *The Distribution and Abundance of Macrobenthic Invertebrates in the Murray Mouth and Coorong Lagoons 2006 to 2008.* CSIRO: Water for a Healthy Country National Research Flagship, Canberra.

Russi D.; ten Brink P.; Farmer A.; Badura T.; Coates D., Förster J.; Kumar R. and Davidson N. (2013) *The Economics of Ecosystems and Biodiversity for Water and Wetlands*. IEEP, London and Brussels; Ramsar Secretariat, Gland.

Scharlemann, J. P. W. and Laurance, W. F. (2008). *How green are biofuels?* Science 319: 43-44.

Schmidt, A.L; Coll, M.; Romanuk, T.N. and Lotze, H.K. (2011). *Ecosystem structure and services in eelgrass Zostera marina and rockweed Ascophyllumnodosumhabitat*. Marine Ecology Progress Series 437: 51–68.

Seppelt, R.; Dormann, C. F.; Eppink, F. V. and Schmist, S. (2011). *A quantitative review of ecosystem service studies: approaches, shortcomings & the road ahead*. Journalof Applied Ecology 48(3)630-636.

Sharma, S.K.; Benger, S.N.; Fernandes, M.B.; Webster, I.T. and Tanner, J.E. (2009). *CLLAMM Dynamic Habitat: Mapping and dynamic modelling of species distributions*. CSIRO: Waterfor a Healthy Country National Research Flagship. Canberra.

Smith, R. I.; Dick, J. McP.and Scott, E. M. (2011). *The role of statistics in the analysis of ecosystem services*. Environmetrics 22(5 SI): 608-617.

Steudel, B.; Hautier, Y.; Hector, A. and Kessler, M. (2011). *Diverse marsh plant communities are more consistently productive across a range of different environmental conditions through functional complementarity*. Journal of Applied Ecology 48:1117-1124.

Stratford, C. J.; Acreman, M. C. and Rees, H. G. (2011). *A simple method for assessing the vulnerability of wetland ecosystem services*. Hydrological Sciences Journal-Journal des Sciences Hydrologiques 56(8):1485-1500.

Syrbe, R. andWalz, U. (2011).*Spatial indicators for the assessment of ecosystem services: Providing, benefiting & connecting areas & landscape metrics*. Ecological Indicators 21(SI): 80-88.

TEEB (2010).*The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations*. Editor: Kumar P..Earthscan, London and Washington.

Thomsen, M.; Faber, J. H. and Sorensen, P. B. (2012). *Soil ecosystem health and services - Evaluation of ecological indicators susceptible to chemical stressors*. EcologicalIndicators16 (SI) 67-75.

Tuvendal, M., and T. Elmqvist. (2011). *Ecosystem services linking social and ecological systems: river brownification and the response of downstream stakeholders*. Ecology and Society 16(4):21.

UK National Ecosystem Assessment (2011). *The UK National Ecosystem Assessment: Synthesis of the Key Findings*. UNEP-WCMC, Cambridge

Vatn, A. (2010). *An institutional analysis of payments for environmental services*. Ecological Economics 69 (6): 1245–1252.

Webster I.T. (2005). *An overview of the Hydrodynamics of the Coorong and Murray Mouth*. Water for a Healthy Country National Research Flagship. CSIRO, Canberra.

Webster IT (2007).*Hydrodynamic Modelling of the Coorong*. Water for a Healthy CountryNational Research Flagship. CSIRO, Canberra.

Wedderburn, S and Hammer, M. (2003). *The Lower Lakes Fish Inventory: Distribution and conservation of freshwater fishes of the RAMSAR Convention Wetland at the Terminus of the Murray Darling Basin, South Australia*. Native Fish Australia (SA) Inc. Adelaide.

Willaarts, B.A.; Volk, M. and Aguilera, P.A.(2012). *Assessing the ecosystem services supplied by freshwater flows in Mediterraneanagroecosystems*. Agricultural Water Management 105:21–31.

Worm, B.; Barbier, E.B.; Beaumont, N.; Duffy, J.E.; Folke, C.; Halpern, B.S.; Jackson, J.B.C.; Lotze, H.K.; Micheli, F.; Palumbi, S.R.; Sala, E.; Selkoe, K.A.; Stachowicz, J.J. and Watson, R. (2006). *Impacts of biodiversity loss on ocean ecosystem services*. Science 314:787–790.

Yang, W. (2011). *Variations in ecosystem service values in response to changes in environmental flows: A case study of Baiyangdian Lake, China.* Lake & Reservoir Management, 27 (1): 95-104.
Appendix 1 - Potential ecosystem services supported by the Coorong and Lakes Ramsar Site management units (expanded tables)

Lake Alexandrina and Lake Albert										
Wetland type located within unit (as described in Phillips & Muller (2006)	Ecosystem service	Details of Ecosystem Service at Ramsar designation (1985)	Current status	Evidence?	Supporting processes	Knowledge Gap				
 Rocky marine shores Sand, shingle or pebble shores Permanent rivers/streams/creeks Seasonal/intermittent/irre gular rivers/streams/creeks Permanent freshwater lakes Seasonal/intermittent freshwater lakes Seasonal/intermittent saline/brackish/alkaline lakes and flats Seasonal/intermittent saline/brackish/alkaline marshes/pools Permanent freshwater marshes/pools Seasonal/intermittent freshwater marshes/pools Seasonal/intermittent freshwater marshes/pools Shrub-dominated wetlands Freshwater, tree- dominated wetlands Seasonally flooded agricultural land Canals and drainage channels, ditches. 	Wetland Products	Irrigation water	Pipelines were constructed to supply Murray Water from Tailem Bend in 2008/09. Irrigation water currently being utilised again from Lake Alexandrina and Lake Albert as quality (salinity levels) are restored The MDBA(2011) noted that a number of dairy and beef farmers on the Lakes had ceased irrigating (left industry or switched to dryland farming)	Yes - Pre- drought and currently dairy farmers and vineyards (Langhorne and Currency Creek) access/ed water from Lake Alexandrina. Also growers of Lucerne and horticulture ²	 Salinity Turbidity and sedimentation patterns Water levels Water regime (particularly flow patterns) 	Consultation required with PIRSA on number of dairy and beef farmers remaining within industry and/or having transitioned to dryland farming Econsearch (2011) for PIRSA undertook an economic profile fo the River Murray Region of SA (utilising 2006/07 data). Consultation should be undertaken with PIRSA/Econsearch to ascertain whether this report can be broken down further to provide economic data on the Coorong, Alexandrina Coastal, Alexandrina Strathalbyn Distrcit Council and Murray Bridge Regional Council Statistical Local Areas only.				

² Information sourced from 'Guide to the Proposed Basin Plan: Technical Background Part III: MDBA (2011)

	Drinking Water	No drinking water	Yes – at time of	-	Salinity	-
	(Lake Alexandrina	is utilised at	designation a	-	Turbidity and	
	only)	present due to the	number of		sedimentation	
		elevated salinity	licenses were		patterns	
		levels	active and	-	Water levels	
			taken up	-	Water regime	
					(particularly	
					flow patterns)	
				-	Water quality	

	Commercial and	The sector in the	Yes -	-	Salinity	Request from SARDI / PIRSA whether
	recreational	Lakes and	36 fishing	-	Turbidity and	a stock status assessment was
	fisheries	Coorong is a	licences current		sedimentation	carried out in 2011-2012 and
		multi-species	in place ³		patterns	update if applicable.
		fishery	although only a	-	Keystone	
		including	small number		aquatic plant	Analysis could be undertaken on
		Coorong mullet,	are currently		species and	the fishery stock status reports from
		mulloway, bony	active.		assemblages	designation to present day in order
		bream, callop,		-	Water levels	to demonstrate how the
		European carp	Fishery Stock	-	Habitat	composition and value of the fishery
		and	Status Report for		availability	has changed since designation.
		Goolwa cockle	the Southern		(particularly	Previous reports will require
		(Pipi).	Australian Lakes		temporal and	requesting from PIRSA. Suggest that
			and Coorong		spatial	consultation should be undertaken
			Fishery (Ferguson		connectivity)	with Greg Ferguson of SARDI.
			2012) provided	-	Water regime	
			current data on		(particularly	Econsearch (2011) for PIRSA
			the status of the		flow patterns)	undertook an economic profile fo
			fishery and			the River Murray Region of SA
			showed the			(utilising 2006/07 data).
			greatest			Consultation should be undertaken
			contributions to			with PIRSA/Econsearch to ascertain
			total catch in			whether this report can be broken
			2010-1011was			down further to provide economic
			yellow-eye			data on the Coorong, Alexandrina
			mullet (with 47%			Coastal, Alexandrina Strathalbyn
			of the fishery			District Council and Murray Bridge
			catch) and pipi			Regional Council Statistical Local
			with the second			Areas only.
			greatest (38%).			

³http://www.environment.sa.gov.au/cllmm/pdfs/mhf-document.pdf

Grazing	Dairy and beef farms surround the Lakes	Yes - Dairy and beef farms surrounding the Lakes	 Salinity Water levels Primary production Vegetational productivity, pollination, regeneration processes, succession etc. 	Consultation required with PIRSA on number of dairy and beef farmers remaining within industry and/or having transitioned to dryland farming.
Reeds and grasses for traditional crafts	Area significant for location of spiny flat-sedge	Reduction in quantity and quality of reeds in recent years (Phillips and Muller 2006)	 Salinity Water quality Primary productivity Vegetation productivity Water levels Farming (eg grazing pressures) Competition with other reed species 	Although reported through consultation undertaken by Philips and Muller (as part of the 2006 ECD), consultation should be undertaken with DAARD and local stakeholders in relation to use of the Coorong and Lower Lakes by traditional owners.

	Traditional Ngarrindjeri food species (eggs, birds,fish, yabbies)	Area locally important for items such as swan, duck, seagull and emu eggs, fish such as hardyhead and yabbies (Phillips and Muller 2006)	Yes – although there has been a loss, or severe decline of many of these species and their products, particularly in recent years	 Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water quality Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns) 	Although reported through consultation undertaken by Philips and Muller (as part of the 2006 ECD), consultation should be undertaken with DAARD And local stakeholders in relation to use of the Coorong and Lower Lakes by traditional owners.
Maintenan ce of hydrologica I stability	Flood mitigation	-	Lakes are likely acting as flood mitigation to local residential communities (eg Goolwa)	 Water levels Water regime (flow patterns and gradients) Slope and bank stability Connectivity between water bodies 	Consultation could be undertaken with Alexandrina and Coorong Councilscoastal engineer to ascertain their understanding of the role the Coorong and Lower Lakes play in local flood prevention. Was modelling carried out as part of the CLLAMMecology work as to the retention of each part of the system?

	Groundwater	-	Major processes	-	Salinity	A number of boreholes exist within
	interactions		such	-	Water	the Coorong and Lower Lakes
			as groundwater		levels(particular	catchment. In 2010 they were being
			recharge and		ly in the	monitored by the LAP for depth and
			discharge,		aquifers)	salinity (as part of 200 BH's
			drylandsalinisatio	-	Water regime	monitored). Current monitoring
			n,		(particularly	status and who currently
			irrigation and		flow patterns	undertaking should be identified
			groundwater/		and gradients)	DEWNR?). Also SA Obswell Network
			surface water	-	Connectivity of	online has 33 BH's located within
			interaction		surface water	and directly adjacent to the Lower
			identified within		and	Lakes and Coorong. This data could
			this region		groundwater	be analysed for groundwater levels
			Barnett (1991),			and salinity changes.
			Barnett (1994),			
			Cobb and			Up-to-date irrigation details to be
			Barnett (1994).			requested from PIRSA / MDBA.
Water	Removal and	-	Yes– although	-	Salinity	-
purification	dilution of		direct evidence	-	Turbidity and	
	wastewaters form		unlikely to be		sedimentation	
	irrigation areas,		available		patterns	
	urban areas and			-	Keystone	
	septic tanks				aquatic plant	
					species and	
					assemblages	
				-	Water levels	
				-	Water regime	
					(particularly	
					flow patterns)	
				-	Water retention	
					times of Lakes	

Coastal	Reduce impacts	-	Yes – the coastal	-	Keystone	Establish whether any data on
shoreline	of wind and wave		shoreline and		coastal plant	ASS/PASS exposure during and after
and bank	action and		vegetation plays		species and	the drought broke was collected
stabilisation	currents		a key role in		assemblages	(MDBA / DEWNR?)
			prevention of	-	Dune and	
			wind erosion. This		bank stability	
			was particularly		and slope	
			important during		gradients	
			drought times	-	Habitat	
			when risk of		availability	
			ASS/PASS soils		(particularly	
			being exposed		temporal and	
			and mobilised		spatial	
			through being		connectivity)	
			blown around is		//	
			higher.			
	Prevent erosion by	-	Yes – as long as	-	pH and salinity	Establish whether any data on
	holding sediments		water levels are	-	Keystone	ASS/PASS exposure during and after
	with plant roots		high enough the		aquatic plant	the drought broke was collected
			Lakes play a		species and	(MDBA / DEWNR?)
			vital role in		assemblages	(, ,,
			'locking in'	-	Turbidity and	Were Lake sediment levels
			ASS/PASS, Lakes		sedimentation	recorded as part of observational
			also act as a		patterns	data durina lake water level
			'sink' in retaining	-	Water levels	measurements? (DEWNR / MDBA)
			sediments from	-	Habitat	
			upstream		availability	
			opsilouin		(particularly	
					temporal and	
					spatial	
					connectivity)	
					Water regime	
				-	(particularly	
					(punicularly	
					now patients)	

Sediment and nutrient retention	Flood retardation and sediment and nutrient deposition	-	Yes – Lakes act as a sediment sink for the fine sediments swept down the MBD	-	Soil, geology, substrates, soil type Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Water regime (particularly flow patterns)	-
Local climate regulation	Local climate stabilisation, particularly in relation to rainfall and temperature	-	No direct evidence although highly likely that Lagoons will be acting as climate regulators on a local level by absorbing heat during the day and expelling heat during the nights.	-	Area, boundary and dimensions of lake Temporal and spatial connectivity of Lake in conjunction to other water bodies Water regime (particularly flow patterns) Water levels Temperature and stratification	Further research required to provide evidence that lagoons are acting as climate regulators on a local scale.

Climate change mitigation	Sequestering and cycling of carbon	-	Yes – Brookes et al. (2009) demonstrated the Lower Lakes as a nutrient (and likely carbon) source for the downstream Coorong and Murray Mouth	-	Carbon cycling Nutrient cycling	Further research required – also the role that the Lower Lakes play (ie whether this role changes between drought and non-drought conditions?)
Biological control of pest and diseases	Support of predators of agricultural pests		Yes – evidenced through support of bird populations (Patton <i>et</i> <i>al.</i> 2009) and Rogers & Paton (2009)	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns)	Current status of bird numbers and visits needed – Consultation with Dave Paton and other experts as well as local bird groups needed

Recreatio	n Boating and	Diminished in	Yes – area	-	Access	Current recreation and tourism
and touris	m water skiing	recent years	always has	-	Area,	numbers should be sought (Tourism
		(particularly	historically been		boundary and	SA?)
		during the	a popular		dimensions of	
		drought) due to	boating area.		Lakes	Econsearch (2011) for PIRSA
		low water levels		-	Temporal and	undertook an economic profile of
		and flows and	Also refer Cast et		spatial	the River Murray Region of SA
		barriers which	al. (2008)		connectivity of	(utilising 2006/07 data).
		were installed to			Lakes in	Consultation should be undertaken
		aid Lakes salinity			conjunction to	with PIRSA/Econsearch to ascertain
		issues. Barriers			other water	whether this report can be broken
		have now been			bodies	down further to provide economic
		removed (last one		-	Water regime	data on the Coorong, Alexandrina
		at Currency Creek			(particularly	Coastal, Alexandrina Strathalbyn
		being removed at			flow patterns)	District Council and Murray Bridge
		the moment) and		-	Water levels	Regional Council Statistical Local
		locks are fully		-	Water quality	Areas only.
		operational.		-	Visual	
		Marina at			aesthetics	
		Hindmarsh Island is				
		increasing				
		popularity in				
		boating in local				
		area.				

	Fishing	Diminished in	Yes -		Salinity	Consultation with SARFAC and
	i isi ili ig	recent years due	recreational		Turbidity and	local fishers should be undertaken
		to water quality	fishing has	-		for up-to-date numbers of rec
		issues (particularly	historically been		natterns	fishers utilising the grea
		salinity) and falling	a popular		Kevistone	
		fish stocks	nastime in the		aquatic plant	
			Lakes and		species and	
			adjacent areas		assemblages	
			adjacern areas.	_	Water levels	
			Also refer Cast et	- 1	Habitat	
			al (2008)		availability	
			un (2000)		(particularly	
				-	temporal and	
					spatial	
					connectivity)	
				_ \	Water reaime	
					(particularly	
				1	flow patterns)	
	Bird watching and		Yes - Site		Salinity	Current status of bird numbers and
	sightseeing		internationally	- 1	Turbidity and	visits needed – Consultation with
			renowned for	9	sedimentation	Dave Paton and other experts as
			birdwatching.	1	patterns	well as local bird groups needed
			Patton et	- 1	Keystone	
			al. (2009) and	(aquatic plant	
			Rogers & Paton	9	species and	
			(2009)	(assemblages	
				- '	Water levels	
			Also refer Cast et	- 1	Habitat	
			al. (2008)	(availability	
					(particularly	
				1	temporal and	
				9	spatial	
				(connectivity)	
				-	water regime	
					(particularly	
				1	tiow patterns)	

	Swimming,	Yes-area	- A	ccess	Consultation should be undertaken
	picnicking and	historically	- A	rea,	with local tourism operators /
	camping	significant for	b	oundary and	caravan parks etc for current levels.
		swimming,	d	imensions of	
		picnicking and	Lo	akes	Refer also comments on
		camping	- Te	emporal and	Econsearch (2011) report.
			sp	oatial	
		Also refer Cast et	С	onnectivity of	
		al. (2008)	Lo	akes in	
			С	onjunction to	
			0	ther water	
			b	odies	
			- W	/ater regime	
			(r	particularly	
			flo	ow patterns)	
			- W	later levels	
			- W	/ater quality	
			- V	isual	
			a	esthetics	

	Wine & food	Wine and food	Yes - Lanahorne	- Salinity	Consultation should be undertaken
	related tourism	tourism has arown	and Currency	- Turbidity and	with the wineries and local tourism
		substantially since	Creek wineries	sedimentation	operators / for current visitor
		the Ramsar site	(over 20	patterns	numbers / nights occupancy linked
		designation	branded	- Water levels	to winery visits etc
		(particularly since	vinevards and 10	- Water regime	
		2000).	wineries) draw	(particularly	Refer also comments on
		,	tourism. Wine	flow patterns)	Econsearch (2011) report.
			tourism at		
			Langhorne		
			Creek was		
			highlighted		
			within the SA		
			Wine and		
			Tourism		
			Strategy2009-		
			2014 as a key		
			area ⁴		

⁴ South Australian Food and Wine Tourism Strategy 2009 – 2014: http://satic.com.au/images/uploads/industry_resources/foodwine_tourism_strategy.pdf

 				1		
Food web	Nutrient cycling		Yes – Brookes et	-	Water levels	-
support			al. (2009) demons	-	Salinity	
			trated the Lower	-	Turbidity and	
			Lakes as a food		sedimentation	
			source for the		patterns	
			downstream	-	Keystone	
			Coorong and		aquatic	
			Murray Mouth.		detritivores	
			Also refer	-	Water reaime	
			CLLAMMecolog		(particularly	
			y reports: Cook		flow patterns)	
			et al. (2008),		1 1	
			Fernandes&			
			Tanner (2009),			
			Griaget			
			al. (2009).			
			Haeseet			
			al (2009) Krullet			
			al (2008: 2009)			
	Primary ecosystem	_	Yes - refer	-	Salinity	-
	nroduction				Turbidity and	
	production		v reports	-	sedimentation	
					natterns	
					Kovstono	
			UI. (2007) Rovillat	-	reysione	
			01. (2007)		species and	
					ussemblages	
			al. (2008)	-	water levels	
			- Nayar& Loo	-	Habitat	
			(2009)		availability	
					(particularly	
					temporal and	
					spatial	
					connectivity)	
				-	Water regime	
					(particularly	
					flow patterns)	
				-	Nutrient and	
					organic cycling	

Ecological	Representative of	Yes – As	- Salinity	A review of Ramsar status since
values	a unique	evidenced by	- Turbidity and	designation should be undertaken.
	ecosystem	inclusion within	sedimentation	A focus could be made on bird
	(globally, national	the Ramsar Site	patterns	numbers as a surrogate for overall
	and regionally)	series. Refer	- Keystone	ecological health. Will have to be
	Supports a large	Ramsar	aquatic plant	in two parts: designation to drought
	variety of	designation	species and	and post drought
	ecological	sheets.	assemblages	
	communities		- Water levels	
	Supports a	Also refer Phillips	- Habitat	
	number of	& Muller (2006)	availability	
	globally and	Ecological	(particularly	
	nationally	Character	temporal and	
	threatened	Description	spatial	
	species and	(ECD), Murray	connectivity)	
	communities	Darling Basin	- Water regime	
	Supports a high	Plan (2013) and	(particularly	
	diversity of species	the following	flow patterns)	
	and assemblages	CLLAMMecolog	 Nutrient and 	
	important for	y publications for	organic cycling	
	conserving	data		
	biodiversity at the	concerning		
	bioregional scale	underpinning		
	Supports animal	processes:		
	taxa at critical	 Aldridge et 		
	stages of their	al. (2009)		
	lifecycle and	- Deeganet		
	during drought	al. (2009)		
	Supports	- Ford (2007)		
	significant	- Gillanders&		
	numbers and	Munro		
	diversity of	(2009)		
	wetland-	- Lamontagn		
	dependent birds	eet al.(2007)		
	including	- Langley et		
	migratory species	al. (2009)		
	listed under the	- Lester et		
	JAMBA and	al. (2009)		
	САМВА	- Lester		
	agreements	&Fairweathe		

	Supports significant numbers and diversity of native fish, including migratory species.	r(2008, 2009) - Noellet al. (2009) - Rogers & Paton (2009) - Rolsten&Ditt mann (2009) - Sharma et al. (2009) - Webster (2005: 2007)	
Cultural values ⁵	Aesthetics, amenity Cultural and spiritual significance for the Ngarrindjeri people	Yes – refer Cast et al. (2008) Yes – refer Phillips & Muller (2006) Ecological Character Description (ECD)	This will require updating through consultation in order to ascertain the ongoing cultural and spiritual significance (and whether this is/has been affected by the changing condition of the Coorong and Lower Lakes).
	Educational and research site	Yes	Consultation with local schools and Universities (as well as MBBA and DEWNR) should confirm the ongoing importance of the Coorong and Lower Lakes as educational and research sites.

Tributaries						
Wetland type located within unit (as described in Phillips & Muller (2006)	Ecosystem service	Details of Ecosystem Service at Ramsar designation (1985)	Current status	Evidence?	Supporting processes	Knowledge Gaps

⁵ Cultural value ecosystem services have not been discussed further within this document as they are being considered elsewhere under a socio-cultural review currently in progress by CSIRO for the MDBA (reference).

•	Permanent	Wetland	Irrigation water	Unknown current	Yes – Several	-	Salinity	Consultation should be undertaken
	rivers/streams/creeks	Products		status	dams rely on the	-	Turbidity and	to confirm the number of licences
•	Permanent freshwater				flows from the		sedimentation	and water volumes still active
	lakes				Tributaries. Also		patterns	
•	Seasonal/intermittent				as part of the	-	Water levels	
	saline/brackish/alkaline				MDB system	-	Water regime	
	marshes/pools				generally at time		(particularly	
•	Permanent freshwater				of designation a		flow patterns)	
	marshes/pools				number of			
•	Seasonal/intermittent				licenses were			
	freshwater				active (and			
	marshes/pools				continue to			
•	Freshwater, tree-				remain so).			
	dominated wetlands		Drinking Water	Unknown - Current	Yes –as part of	-	Salinity	Consultation with MBDBA should
•	Seasonally flooded			status	the MDB system	-	Turbidity and	confirm the number of active
	agricultural land				generally at time		sedimentation	licences within the Tributaries
•	Water storage areas				of designation a		patterns	
•	Canals and drainage				number of	-	Water levels	
	channels, ditches.				licenses were	-	Water regime	
					active.		(particularly	
							flow patterns)	
						-	Water quality	

	Commercial and				Salinity	Consultation with PIRSA should be
	recreational				Turbidity and	undertaken to ascertain whether
	ficharias			-	sedimentation	(and number of) existing fishing
					sedimentation	licenses extend up in to the
					Kovetono	Tributarios (and how far)
				-		
				-	species and assemblages Water levels	SARFAC and local fishers should be consulted in order to ascertain the use of the Tributaries and how this
				-	Habitat	has changed since designation
				-	availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns)	Econsearch (2011) for PIRSA undertook an economic profile of the River Murray Region of SA (utilising 2006/07 data). Consultation should be undertaken with PIRSA/Econsearch to ascertain whether this report can be broken down further to provide economic data on the Coorong, Alexandrina Coastal, Alexandrina Strathalbyn District Council and Murray Bridge Regional Council Statistical Local Areas only
	Grazing	Dairy and beef farms in areas	Yes - Dairy and beef farms	-	Salinity Water levels	Consultation with PIRSA will confirm number of farms with arazing
		surrounding and	surrounding and	-	Primary	adjacent to the Tributaries (also
		adjacent to the	adjacent to the		production	whether they are utilising Tributary
		Tributaries	Tributaries	-	Vegetational	waters for livestock drinking water)
					productivity,	3 - - - /
					pollination,	
					regeneration	
					processes,	
					succession etc.	

Reeds and grasses for traditional crafts	Area significant for location of spiny flat-sedge	Reduction in quantity and quality of reeds in recent years (Phillips and Muller 2006)	 Salinity Water quality Primary productivity Vegetation productivity Water levels Farming (eg grazing pressures) Competition with other reeconspecies 	Consultation with local stakeholders and indigenous groups will be required to ascertain whether the reed quantity and quality is still poor.
Traditional Ngarrindjeri food species (eggs, birds,fish, yabbies)	Area locally important for items such as swan, duck, seagull and emu eggs, fish such as hardyhead and yabbies (Phillips and Muller 2006)	Yes – although there has been a loss, or severe decline of many of these species and their products, particularly in recent years	 Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water quality Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns) 	Consultation with local stakeholders and indigenous groups should be undertaken to collate information of whether the traditional food species are still available and being utilised

Maintenan	Flood mitigation	-	Tributaries	-	Water levels	Consultation could be undertaken
ce of			provide	-	Water regime	local Council coastal engineers to
hydrologica			drainage and		(flow patterns	ascertain their understanding of the
l stability			connection of		and gradients)	role the Coorong and Lower Lakes
,			different water	-	Slope and bank	play in local flood prevention.
			bodies. Also		stability	. ,
			provide water	-	Connectivity	Was modelling carried out as part of
			, storage within		, between water	the CLLAMMecology work as to the
			the wetlands		bodies	retention of each part of the
			themselves.			system?
	Groundwater	-	Groundwater	-	Salinity	-
	interactions		inflows across	-	Water levels	
			the plains sustain		(particularly in	
			flows over		the aquifers)	
			summer or	_	Water reaime	
			initiate early		(particularly	
			autumn flows in		flow patterns	
			dry years (Phillips		and aradients)	
			8. Muller 2006)	_	Connectivity of	
			Also refer		surface water	
			Barnett (1991)		and	
			Barnett (1994)		aroundwater	
			Cobb and		groonawarer	
			Barnett (1994)			
			and			
			Wedderburn			
			and Hammer			
			(2003)			
1			120001	1		

	- · ·	T			
Water	Removal and	-	Yes – although	- Salinity	Further research required to
purification	dilution of		direct evidence	 Turbidity and 	establish how crucial a role the
	wastewaters form		unlikely to be	sedimentation	Tributaries play in removal and
	irrigation areas,		available	patterns	dilution of wastewaters from
	urban areas and			- Keystone	irrigation areas (particularly from the
	septic tanks			aquatic plant	adiacent wineries and farming
				species and	properties) Also likely holding times
				assemblages	in wetland areas
				- Water levels	
				- Water regime	
				(particularly	
				flow patterns)	
				Mater retention	
				limes of Lakes	
River bank	Prevent erosion by	-	Yes – within the	- Keystone	Have surveys been undertaken of
stabilisation	holding sediments		wetland systems	aquatic plant	the current health of the trees lining
	with plant roots		(as opposed to	species and	the river/s? DEWNR/MDBA
			the rivers and	assemblages	
			streams which	- Habitat	
			play a role in	availability	
			moving	(particularly	
			sediments	temporal and	
	1	1			
			downstream)	spatial	

Sediment and nutrient retention	Flood retardation and sediment and nutrient deposition	-	Yes – within the wetland systems		pH and salinity Keystone aquatic plant species and assemblages Turbidity and sedimentation patterns Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns)	Research required to determine how the Tributaries influence flood retardation and sediment / nutrient deposition during drought and non- drought flows.
Local climate regulation	Local climate stabilisation, particularly in relation to rainfall and temperature	-	Yes – no direct evidence although highly likely that Lagoons will be acting as climate regulators on a local level by absorbing heat during the day and expelling heat during the nights.	-	Soil, geology, substrates, soil type Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Water regime (particularly flow patterns)	Further research required to ascertain whether systems such as the Tributaries play any role as climate regulators on a local scale.

Climate change mitigation	Sequestering and cycling of carbon	-	Yes – Brookes et al. (2009) demonstrated the Lower Lakes as a nutrient (and likely carbon) source for the downstream Coorong and Murray Mouth	-	Carbon cycling Nutrient cycling	Further research required – also the role that the Tributaries play (ie whether this role changes between drought and non-drought conditions? Are they always linked to the rest of the system even in low flow scenarios?)
Biological control of pest and diseases	Support of predators of agricultural pests	-	Yes – evidenced through support of bird populations (Patton et al.2009) and Rogers & Paton (2009)	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns)	

	Recreation and tourism	Boating and water skiing	Less popular that the Lakes. Also boating levels diminished in recent years (particularly during the drought) due to low water levels, flows and barriers which were installed to aid Lakes salinity issues. Barriers have now been removed (last one at Currency Creek being removed at the moment) and locks are fully operational.	Yes – continued use of the area by boaters	-	Access Area, boundary and dimensions of Lakes Temporal and spatial connectivity of Lakes in conjunction to other water bodies Water regime (particularly flow patterns) Water levels Water quality Visual aesthetics	Current recreation and tourism numbers should be sought (Tourism SA?). Also refer previous comment regarding separation of Econsearch (2011) data into specific areas if possible.
--	---------------------------	-----------------------------	--	--	---	--	--

Fishing	Diminished in recent years due to water quality issues (particularly salinity) and falling fish stocks	Yes – recreational fishing has historically been a popular pastime in the Coorong, Lower Lakes and adjacent areas	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns)	Consultation with SARFAC and local fishers should be undertaken for up- to-date numbers of rec fishers utilising the area.
Bird watching and sightseeing	Current status of bird numbers and visits needed	Yes - Site internationally renowned for bird watching. Patton et al. (2009) and Rogers & Paton (2009)	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns)	Current status of bird numbers and visits needed – Consultation with Dave Paton and other experts as well as local bird groups needed Will be difficult to separate data for the Tributaries alone.

	Swimming, picnicking and camping		Yes –area historically significant for swimming, picnicking and camping Also refer Cast <i>et</i> <i>al.</i> (2008)	-	Access Area, boundary and dimensions of Lakes Temporal and spatial connectivity of Lakes in conjunction to other water bodies Water regime (particularly flow patterns) Water levels Water quality Visual aesthetics	Consultation should be undertaken with local tourism operators / caravan parks etc for current levels Will be difficult to separate data for the Tributaries alone.
	Wine and food tourism	Wine and food tourism has grown substantially since the Ramsar site designation (particularly since 2000).	Yes - Langhorne and Currency Creek wineries (over 20 branded vineyards and 10 wineries) draw tourism. Wine tourism at Langhorne Creek was highlighted within the SA Wine and Tourism Strategy2009- 2014 as a key area ⁶	-		Consultation should be undertaken with the wineries and tourism operators in order to estimate the importance of the Tributaries. Also refer previous comment regarding separation of Econsearch (2011) economic data into specific areas if possible

⁶ South Australian Food and Wine Tourism Strategy 2009 – 2014: http://satic.com.au/images/uploads/industry_resources/foodwine_tourism_strategy.pdf

Food web	Nutrient cycling	Yes – Brookes et	-	Water levels	-
support		al. (2009) demons	-	Salinity	
		trated the Lower	-	Turbidity and	
		Lakes as a food		sedimentation	
		source for the		patterns	
		downstream	-	Keystone	
		Coorona and		aquatic	
		Murray Mouth		detritivores	
		Also refer	_	Water regime	
				(particularly	
		v reports: Cook		flow patterns)	
		ot al (2008)			
		Erui (2000),			
		Tenner (2000)			
		Criment			
		GI. (2009),			
		HOeseel			
		al. (2009), Krullet			
		ai. (2008; 2009)		0 II II	
	Primary ecosystem	Yes – refer	-	Salinity	-
	production	CLLAMMecolog	-	lurbidity and	
		y reports		sedimentation	
		 Aldridge et 		patterns	
		al. (2009)	-	Keystone	
		- Revillet		aquatic plant	
		al. (2009)		species and	
		 Cook et 		assemblages	
		al. (2008)	-	Water levels	
		- Nayar& Loo	-	Habitat	
		(2009)		availability	
				(particularly	
				temporal and	
				spatial	
				connectivity)	
			-	Water regime	
				(particularly	
				flow patterns)	
			-	Nutrient and	
				organic cycling	

Ecological	Representative of	Yes – As	-	Salinity	A review of Ramsar status since
values	a unique	evidenced by	-	pH	designation should be undertaken.
	ecosystem	inclusion within	-	Salinity	A focus could be made on bird
	(globally, national	the Ramsar Site	-	Turbidity and	numbers as a surrogate for overall
	and regionally)	series. Refer		sedimentation	ecological health. Will have to be in
	Supports a large	Ramsar		patterns	two parts: designation to drought
	variety of	designation	-	Keystone	and post drought
	ecological	sheets.		aquatic plant	
	communities			species and	
	Supports a	Also refer Phillips		assemblages	
	number of	& Muller (2006)	-	Water levels	
	globally and	Ecological	-	Habitat	
	nationally	Character		availability	
	threatened	Description		(particularly	
	species and	(ECD), Murray		temporal and	
	communities	Darling Basin		spatial	
	Supports a high	Plan (2013) and		connectivity)	
	diversity of species	the following	-	Water regime	
	and assemblages	CLLAMMecolog		(particularly	
	important for	y publications		flow patterns)	
	conserving	for data	-	Nutrient and	
	biodiversity at the	concerning		organic cycling	
	bioregional scale	underpinning			
	Supports animal	processes:			
	taxa at critical	- Aldridge et			
	stages of their	al. (2009)			
	lifecycle and	- Deeganet			
	during drought	al. (2009)			
	Supports	- Ford (2007)			
	significant	- Gillanders&			
	numbers and	Munro			
	diversity of	(2009)			
	wetland-	- Lamontagn			
	dependent birds	eet al.(2007)			
	including	- Langley et			
	migratory species	al. (2009)			
	listed under the	- Lester et			
	JAMBA and	al. (2009)			
	САМВА	- Lester			
	agreements	&Fairweathe			

	Supports significant numbers and diversity of native fish, including migratory species.		r(2008, 2009) - Noellet al. (2009) - Rogers & Paton (2009) - Rolsten&Ditt mann(2009) - Sharma et al. (2009) - Webster (2005; 2007)	
Cultural values	Aesthetics, amenity Cultural and spiritual significance for the Ngarrindjeri people	Yes Yes	Yes –refer Cast et al. (2008) Yes – refer Philips & Muller (2006)	- This will require updating through consultation in order to ascertain the ongoing cultural and spiritual significance (and whether this is/has been affected by the changing condition of the Coorong and Lower Lakes).
	Educational and research site	Yes		Consultation with local schools and Universities (as well as MBBA and DEWNR) should confirm the ongoing importance of the Coorong and Lower Lakes as educational and research sites.

Murray Mouth & Estuaries						
Wetland type located within unit (as described in Phillips & Muller (2006)	Ecosystem service	Details of Ecosystem Service at Ramsar designation (1985)	Current status	Evidence?	Supporting processes	Knowledge Gap

•	Permanent shallow	Wetland	Commercial and	The sector in the	Yes -	-	Salinity	Econsearch (2011) for PIRSA
	marine waters	Products	recreational	Lakes and	36 fishing	-	Turbidity and	undertook an economic profile of
•	Rocky marine shores		fisheries	Coorong is a	licences current		sedimentation	the River Murray Region of SA
•	Sand, shingle or pebble			multi-species	in place ⁷		patterns	(utilising 2006/07 data). Consultation
	shores			fishery	although only a	-	Keystone	should be undertaken with
•	Estuarine waters			including	small number		aquatic plant	PIRSA/Econsearch to ascertain
•	Intertidal mud, sand or			Coorong mullet,	are currently		species and	whether this report can be broken
	salt flats			mulloway, bony	active		assemblages	down further to provide economic
•	Intertidal marshes			bream, callop,		-	Water levels	data on the Coorong, Alexandrina
•	Intertidal forested			European carp	Fishery Stock	-	Habitat	Coastal, Alexandrina Strathalbyn
	wetlands			and	Status Report for		availability	District Council and Murray Bridge
•	Coastal brackish/saline			Goolwa cockle	the Southern		(particularly	Regional Council Statistical Local
	lagoons			(Pipi).	Australian Lakes		temporal and	Areas only.
•	Coastal freshwater				and Coorong		spatial	
	lagoons				Fishery (Ferguson		connectivity)	Analysis could be undertaken on
					2012) provided	-	Water regime	the fishery stock status reports from
					current data on		(particularly	designation to present day in order
					the status of the		flow patterns)	to demonstrate how the
					fishery and			composition and value of the fishery
					showed the			has changed since designation.
					greatest			Previous reports will require
					contributions to			requesting from PIRSA. Suggest that
					total catch in			consultation should be undertaken
					2010-1011was			with Greg Ferguson of SARDI.
					yellow-eye			
					mullet and pipi			

⁷http://www.environment.sa.gov.au/cllmm/pdfs/mhf-document.pdf

Commercial cockle industry	Pipi was the second largest contributor to the total catch for the Lakes And Coorong fishery (at 38%) which is a 27% increase from the 2006-07 contribution. Catch has been constrained in recent years (2009-2010 and 2011-2012) recently by the TACC with approx. 10% TACC being withheld for winter fishing in 2010-2011 (Ferguson 2012).	Yes – Ferguson (2012) produced the sixth report (including the 2010-2011 data) on the status of seven species including the pipi fishery and built upon the stock status report for the South Australian Lakes and Coorong Fishery.	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns through the Murray Mouth)	Request should be made to PIRSA whether the report has been updated with the 2011-2012 financial year data. Also whether there is any information on the individual areas within the fishery (eg the Coorong in regards to pipe and the individual lakes and Coorong in regards to yellow-eye mullet).
Reeds and grasses for traditional crafts	Area significant for location of spiny flat-sedge and other reeds	Reduction in quantity and quality of reeds in recent years (Phillips and Muller 2006)	-	Salinity Water quality Primary productivity Vegetation productivity Water levels Farming (eg grazing pressures) Competition with other reed species	Although reported through consultation undertaken by Philips and Muller (as part of the 2006 ECD), consultation should be undertaken with DAARD and local stakeholders in relation to use of the Coorong and Lower Lakes by traditional owners.

	Traditional Ngarrindjeri food species (eggs, birds,fish, yabbies)	Area locally important for items such as swan, duck, seagull and emu eggs, fish such as hardyhead and yabbies (Phillips and Muller 2006)	Yes – although there has been a loss, or severe decline of many of these species and their products, particularly in recent years	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water quality Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns)	Although reported through consultation undertaken by Philips and Muller (as part of the 2006 ECD), consultation should be undertaken with DAARD and local stakeholders in relation to use of the Coorong and Lower Lakes by traditional owners.
Maintenan ce of hydrologica I stability	Flood mitigation	-	Yes – Especially as this is the only natural exit for catchment waters and mobilised sediments and soils.	-	Water levels Water regime (flow patterns and gradients) Slope and bank stability Connectivity between water bodies	Consultation could be undertaken with Alexandrina and Coorong Councilscoastal engineer to ascertain their understanding of the role the Coorong and Lower Lakes play in local flood prevention. Was modelling carried out as part of the CLLAMMecology work as to the retention of each part of the system?

Water purification	Removal and dilution of	-	Yes as only natural exit for	-	pH and salinity Keystone	-
	wastewaters form		catchment		aquatic plant	
	irrigation areas,		waters and		species and	
	urban areas and		mobilised		assemblages	
	seplic lanks		sediments and	-	sedimentation	
			50115.		natterns	
				-	Water levels	
				-	Habitat	
					availability	
					(particularly	
					temporal and	
					spatial	
					Water regime	
				-	(particularly	
					flow patterns)	
Coastal	Reduce impacts	-	The coastal	-	Keystone	Further research is needed into the
shoreline	of wind and wave		shoreline and		coastal plant	current condition of the coastal
and bank	action and		vegetation plays		species and	dune systems when compared to
stabilisation	currents		a key role in		assemblages	designation conditions
			prevention of	-	Dune and bank stability	
			wind erosion. This was particularly		and slope	
			important durina		aradients	
			drought times	-	Habitat	
			when risk of		availability	
			ASS/PASS soils		(particularly	
			being exposed		temporal and	
			and mobilised		spatial	
			through being		connectivity)	
			higher			
1				1		

	Prevent erosion by holding sediments with plant roots		Yes – dune plant species help in stabilising dune systems and thereby aid in sediment retention	-	pH and salinity Keystone aquatic plant species and assemblages Turbidity and sedimentation patterns Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns)	Further research is needed into the current condition of the coastal dune systems when compared to designation conditions
Sediment and nutrient retention	Flood retardation and sediment and nutrient deposition	-	Yes – Murray Mouth is the only exit for the fine sediments swept down the MBD. In Murray Mouth closure and restriction times this area then acts as a depositional area.		Soil, geology, substrates, soil type Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Water regime (particularly flow patterns)	-
and tourism water skiing water skiing the Lakes. Also use of the area boating levels diminished in recent years Also refer Cast et (particularly during the drought) due to low water levels, flows and barriers which were installed to aid Lakes salinity issues. Barriers have now boat now water level water level water level water level water regime (particularly during the drought) and barriers area boat and barriers which were installed to aid Lakes salinity issues. Barriers have now boat now water level water compared and water level water level water level water level water level water regime (particularly during the drough barriers which were installed to aid Lakes salinity issues. Barriers have now water level water compared and water level water lev	numbers should be sought (Tourism SA?)					
--	---					
--	---					

Fishing	Diminished in recent years due to water quality issues (particularly salinity) and falling fish stocks	Yes – recreational fishing has historically been a popular pastime on the beaches adjacent to the Murray Mouth and Coorong lagoons. Also refer Cast <i>et</i> <i>al.</i> (2008)	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns)	Consultation with SARFAC and local fishers should be undertaken for up- to-date numbers of rec fishers utilising the area.
Bird watching and sightseeing	Current status of bird numbers and visits needed	Yes - Site internationally renowned for birdwatching. Patton et al. (2009) and Rogers & Paton (2009) Also refer Cast et al. (2008)	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns)	Current status of bird numbers and visits needed – Consultation with Dave Paton and other experts as well as local bird groups needed

	a i i		N/			
	Swimming,	-	Yes	-	Access	Consultation should be undertaken
	picnicking and		Large proportion	-	Area,	with local tourism operators /
	camping		of recreational		boundary and	caravan parks etc for current levels
			activities occur		dimensions of	
			in this region due		Lakes	
			to their relatively	-	Temporal and	
			easy access and		spatial	
			close proximity		connectivity of	
			to Adelaide.		Lakes in	
					conjunction to	
			Also refer Cast et		other water	
			al. (2008)		bodies	
				-	Water regime	
					(particularly	
					flow patterns)	
				_	Water levels	
				-	Water quality	
					Visual	
				-	aosthotics	
Foodwob	Nutriant avaling		Voc. rofor		Water levels	
rupport	Numerii Cycling	-		-	Solipity	-
suppon				-	Sullilly	
				-		
			er al. (2008),		sedimentation	
			Fernandes&		patterns	
			Tanner (2009),	-	Keystone	
			Grigget		aquatic	
			al. (2009),		detrifivores	
			Haeseet	-	Water regime	
			al.(2009), Krullet		(particularly	
			al. (2008; 2009)		flow patterns)	
				-	Connectivity	
					between	
					waterbodies	
					and systems	

	Primary ecosystem	-	Yes – refer	-	Salinity	-
	production		CLLAMMecolog	-	Turbidity and	
			y reports		sedimentation	
			- Aldridge et		patterns	
			al. (2009)	-	Kevstone	
			- Revillet		aquatic plant	
			a(2009)		species and	
			Cook et		assemblages	
			- COOR CI		Water lovels	
			Navare Loo	-	Vuler levels	
			- NUYUI& LOO	-	nubliu	
			(2009)		availability	
					(particularly	
					temporal ana	
					spatial	
					connectivity)	
				-	Water regime	
					(particularly	
					flow patterns)	
				-	Nutrient and	
					organic cycling	
Ecological	Representative of		Yes – As	-	Salinity	A review of Ramsar status since
values	a unique		evidenced by	-	Turbidity and	designation should be undertaken.
	ecosystem		inclusion within		sedimentation	A focus could be made on bird
	(globally, national		the Ramsar Site		patterns	numbers as a surrogate for overall
	and regionally)		series. Refer	-	Keystone	ecological health. Will have to be in
	Supports a large		Ramsar		aquatic plant	two parts: designation to drought
	variety of		designation		species and	and post drought
	ecological		sheets.		assemblages	
	communities			-	Water levels	
	Supports a		Also refer Phillips	-	Habitat	
	number of		& Muller (2006)		availability	
					(particularly	
	nationally		Character		temporal and	
	threatened		Description		spatial	
					spana	
	species and		(ECD), MUITUY		Voiter regime	
	communities		Darling Basin	-	walerregime	

Supports a high	Plai	n (2013) and	(particularly	
diversity of species	the	following	flow patterns)	
and assemblages	CLL	AMMecolog	- Nutrient and	
important for	ур	ublications for	organic cycling	
conserving	dat	a		
biodiversity at the	cor	ncerning		
bioregional scale	unc	derpinning		
Supports animal	pro	cesses:		
taxa at critical	-	Aldridge et		
stages of their		al. (2009)		
lifecycle and	-	Deeganet		
during drought		al. (2009)		
Supports	-	Ford (2007)		
significant	-	Gillanders&		
numbers and		Munro		
diversity of		(2009)		
wetland-	-	Lamontagn		
dependent birds		eet al.(2007)		
including	-	Langley et		
migratory species		al. (2009)		
listed under the	-	Lester et		
JAMBA and		al. (2009)		
САМВА	-	Lester		
agreements		&Fairweathe		
Supports		r (2008,		
significant		2009)		
numbers and	-			
diversity of native		01. (2007)		
fish, including	-	Rogers &		
migratory species.		Palon (2009)		
	-	ROISIEN&DIII		
		Sharma of		
	-			
		Webster		
	-	(2005.2007)		
		[2000, 2007]		

Cultural values ⁸	Aesthetics, amenity	Yes – refer Cast et al. (2008)	
Educational and spiritual significance for the Ngarrindjeri people Educational and research site	Cultural and spiritual significance for the Ngarrindjeri people	Yes – refer Philips & Muller (2006) ECD.	This will require updating through consultation in order to ascertain the ongoing cultural and spiritual significance (and whether this is/has been affected by the changing condition of the Coorong and Lower Lakes).
	Yes	Consultation with local schools and Universities (as well as MBBA and DEWNR) should confirm the ongoing importance of the Coorong and Lower Lakes as educational and research sites.	

Norin Lagoon								
Wetland type located within unit (as described in Phillips & Muller (2006)	Ecosystem service	Details of Ecosystem Service at Ramsar designation (1985)	Current status	Evidence?	Supporting processes	Knowledge Gap		
 Rocky marine shores Sand, shingle or pebble shores Intertidal mud, sand or salt flats Intertidal marshes Coastal brackish/saline lagoons Coastal freshwater lagoons 	Wetland Products	Drinking Water	Number of freshwater soaks around the South and North Lagoons has diminished and those remaining are becoming more saline (as opposed to brackish)	The Ngarrindjeri community have told of the freshwater soaks around South and North Lagoons having once been vital for freshwater for humans and animals	 Salinity Turbidity and sedimentation patterns Water levels Water regime (particularly flow patterns) Water quality 	Consultation with local users and stakeholders should establish whether the freshwater soaks are still usable.		

⁸ Cultural value ecosystem services have not been discussed further within this document as they are being considered elsewhere under a socio-cultural review currently in progress by CSIRO for the MDBA (reference).

Commercial and recreational fisheries	The sector in the Lakes and Coorong is a multi-species fishery including	Yes - 36 fishing licences current in place ¹⁰ although only a small number	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant	Econsearch (2011) for PIRSA undertook an economic profile of the River Murray Region of SA (utilising 2006/07 data). Consultation should be undertaken with PIPS A (Econsograph to accortain
	Coorong mullet, mulloway, bony bream, callop, European carp and Goolwa cockle (Pipi).	are currently active Fishery Stock Status Report for the Southern Australian Lakes and Coorong	-	species and assemblages Water levels Habitat availability (particularly temporal and spatial	whether this report can be broken down further to provide economic data on the Coorong, Alexandrina Coastal, Alexandrina Strathalbyn District Council and Murray Bridge Regional Council Statistical Local Areas only.
	There is a small commercial fishery for mulloway, mostly restricted to the Coorong Lagoons where nets are used to take fish between about 46cm and 70cm in length ⁹ .	Fishery (Ferguson 2012) provided current data on the status of the fishery and showed the greatest contributions to total catch in 2010-1011 was yellow-eye mullet (with 47% of the fishery catch) and pipi with the second greatest (38%).	-	connectivity) Water regime (particularly flow patterns)	Request from SARDI / PIRSA whether a stock status assessment was carried out in 2011-2012 and update if applicable.
Grazing	Dairy and beef farms adjacent to North Lagoon. Grazing is managed around key wetland areas through	Yes - Dairy and beef farms adjacent to North Lagoon.		Salinity Water levels Primary production Vegetational productivity, pollination,	Consultation required with PIRSA on number of dairy and beef farmers remaining within industry and/or having transitioned to dryland farming

⁹ http://www.pir.sa.gov.au/fisheries/recreational_fishing/target_species/mulloway ¹⁰ http://www.environment.sa.gov.au/cllmm/pdfs/mhf-document.pdf

		partnership with the farmers and			regeneration processes,	
		DEWNR.			succession etc.	
	Reeds and grasses for traditional crafts	Area significant for location of spiny flat-sedge	Reduction in quantity and quality of reeds in recent years (Phillips and Muller 2006)	-	Salinity Water quality Primary productivity Vegetation productivity Water levels Farming (eg grazing pressures) Competition with other reed	Although reported through consultation undertaken by Philips and Muller (as part of the 2006 ECD), consultation should be undertaken with DAARD and local stakeholders in relation to use of the Coorong and Lower Lakes by traditional owners.
	Traditional	Arealeeally	Vac although		species	Although reported through
	Iraditional Ngarrindjeri food species (eggs, birds,fish, yabbies)	Area locally important for items such as swan, duck, seagull and emu eggs, fish such as hardyhead and yabbies (Phillips and Muller 2006)	Yes – although there has been a loss, or severe decline of many of these species and their products, particularly in recent years	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water quality Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns)	Although reported through consultation undertaken by Philips and Muller (as part of the 2006 ECD), consultation should be undertaken with DAARD and local stakeholders in relation to use of the Coorong and Lower Lakes by traditional owners.
Maintenan	Flood mitigation	-	North Lagoon is	-	Water levels	Consultation could be undertaken
ceof	0		likely acting as	-	Water regime	with Alexandrina and Coorong
hydrologica			flood mitigation		(flow patterns	Councils coastal engineer to
l stability			to local		and gradients)	ascertain their understanding of the
			residential	-	Siope and bank	role the Coorong and Lower Lakes

			communities (eg Goolwa)-	stability - Connectivity between water bodies	play in local flood prevention. Was modelling carried out as part of the CLLAMMecology work as to the retention of each part of the system?
	Groundwater interactions	-	Major processes such as groundwater recharge anddischarge, drylandsalinisatio n,irrigation and groundwater/sur face water interaction identified within this region Barnett (1991), Barnett (1994), Cobb and Barnett (1994).	 Salinity Water levels (particularly in the aquifers) Water regime (particularly flow patterns and gradients) Connectivity of surface water and groudwater 	A number of boreholes exist within the Coorong and Lower Lakes catchment. In 2010 they were being monitored by the LAP for depth and salinity (as part of 200 BH's monitored). Current monitoring status and who currently undertaking should be identified DEWNR?). Also SA Obswell Network online has 33 BH's located within and directly adjacent to the Lower Lakes and Coorong. This data could be analysed for groundwater levels and salinity changes. Up-to-date irrigation details to be requested from PIRSA / MDBA.
Water purification	Removal and dilution of wastewaters form irrigation areas, urban areas and septic tanks	-	Yes – although direct evidence unlikely to be available	 Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Water regime (particularly flow patterns) Water retention times of Lakes 	-
Coastal shoreline and bank	Reduce impacts of wind and wave action and	-	Yes – the South and North lagoons play a	 Keystone coastal plant species and 	-

	stabilisation	currents		key role in sheltering the habitats and communities behind them from wind and wave actions	assemblages - Dune and bank stability and slope gradients - Habitat availability (particularly temporal and spatial connectivity)	
		Prevent erosion by holding sediments with plant roots	-	Yes - the coastal shoreline and vegetation plays a key role in prevention of wind erosion. This was particularly important during drought times when risk of ASS/PASS soils being exposed and mobilised through being blown around is higher	 pH and salinity Keystone aquatic plant species and assemblages Turbidity and sedimentation patterns Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns) 	Establish whether any data on ASS/PASS exposure during and after the drought broke was collected (MDBA / DEWNR?) Were the North and South lagoon sediment levels recorded as part of observational data during lake water level measurements? (DEWNR / MDBA)
	Sediment and nutrient retention	Flood retardation and sediment and nutrient deposition	-	Yes	 Soil, geology, substrates, soil type Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels 	-

				-	Water regime (particularly flow patterns)	
Local climate regulation	Local climate stabilisation, particularly in relation to rainfall and temperature	-	No direct evidence although highly likely that Lagoons will be acting as climate regulators on a local level by absorbing heat during the day and expelling heat during the nights.	-	Area, boundary and dimensions of lake Temporal and spatial connectivity of Lake in conjunction to other water bodies Water regime (particularly flow patterns) Water levels Temperature and stratification	Further research required to provide evidence that lagoons are acting as climate regulators on a local scale.
Climate change mitigation	Sequestering and cycling of carbon	-	Yes – Brookes et al. (2009) demonstrated the Lower Lakes as a nutrient (and likely carbon) source for the downstream Coorong and Murray Mouth		Carbon cycling Nutrient cycling	-
Biological control of pest and diseases	Support of predators of agricultural pests		Yes – evidenced through support of bird populations refer Oborne (2003), Patton et	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant	-

			ai. (2009) and Rogers & Paton (2009)	species and assemblages - Water levels - Habitat availability (particularly temporal and spatial connectivity) - Water regime (particularly flow patterns)	
Recreation and tourism	Boating and water skiing	Diminished in recent years (particularly during the drought) due to low water levels and flows and barriers which were installed to aid Lakes salinity issues. Barriers have now been removed (last one at Currency Creek being removed at the moment) and locks are fully operational. Marina at Hindmarsh Island is increasing popularity in boating in local area.	Yes – area always has historically been a popular boating area.	 Access Area, boundary and dimensions of Lakes Temporal and spatial connectivity of Lakes in conjunction to other water bodies Water regime (particularly flow patterns) Water levels Water quality Visual aesthetics 	Current recreation and tourism numbers should be sought (Tourism SA?) Also refer Econsearch (2011) comments previously in relation to possible breakdown of economic data into smaller spatial units.
	Fishing	Diminished in recent years due	Yes – recreational	 Salinity Turbidity and sodimontation 	Consultation with SARFAC and local fishers should be undertaken for up-
		issues (particularly	historically been	patterns	utilising the area.

	salinity) and falling /changing fish stocks	a popular pastime in the Lakes and adjacent areas	 Keystone aquatic plant species and assemblages Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly temporal and spatial connectivity) 	
Bird watching and sightseeing	Current status of bird numbers and visits needed Diminished in recent years due to elevated salinity levels within the North Lagoon	Yes - Site internationally renowned for bird watching. Patton <i>et</i> <i>al.</i> (2009) and Rogers & Paton (2009)	 Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns) 	Current status of bird numbers and visits needed – Consultation with Dave Paton and other experts as well as local bird groups needed
Swimming, picnicking and camping		Yes - refer CSIRO report.	 Access Area, boundary and dimensions of Lakes Temporal and spatial connectivity of 	Consultation should be undertaken with local tourism operators / caravan parks etc for current levels

				- - -	Lakes in conjunction to other water bodies Water regime (particularly flow patterns) Water levels Water quality Visual aesthetics	
Food web support	Nutrient cycling		Yes – Brookes et al. (2009) demons trated the Lower Lakes as a food source for the downstream Coorong and Murray Mouth. Also refer CLLAMMecolog y reports: Cook et al. (2008), Fernandes& Tanner (2009), Grigget al. (2009), Krullet al. (2009), Krullet al. (2008; 2009)	-	Water levels Salinity Turbidity and sedimentation patterns Keystone aquatic detritivores Water regime (particularly flow patterns)	-
	Primary ecosystem production	North Lagoon traditionally supported communities of <i>Ruppiamegacarp</i> a which is very important species in the food chain for waders and water birds. In	Yes - refer CLLAMMecolog y reports - Aldridge et al. (2009) - Revillet al. (2009) - Cook et al. (2008) - Nayar& Loo	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Habitat	Research needed into current status, extent and species composition of <i>Ruppiamegacarpacommuniites</i> and whether theyare recovering now that the drought has ended.

		recent years the	(2009)	availability	
		heds of R	(2007)	(particularly	
		meaacarnahave		temporal and	
		heen lost and the		spatial	
		more salt tolerant		connectivity)	
		R tuberosa is		- Water regime	
		coloinising from		- water regime	
		South lagoon		flow patterns)	
		(Nichol 2005)		Nutrient and	
		(NICHOI, 2003).			
Faalaaiaal	Depresentative of		Vaa Aa		A review of Democrater versions
ECOlOgical	Representative of		res – As	- Solifility	A review of Ramsar status since
values	a unique		evidenced by	- Iurbiaity and	designation should be undertaken.
	ecosystem			seaimentation	A focus coula be made on bira
	(globally, national		the Ramsar Site	patterns	numbers as a surrogate for overall
	and regionally)		series. Refer	- Keystone	ecological health. Will have to be in
	Supports a large		Ramsar	aquatic plant	two parts: designation to drought
	variety of		designation	species and	and post drought
	ecological		sheets.	assemblages	
	communities			- Water levels	
	Supports a		Also refer Phillips	- Habitat	
	number of		& Muller (2006)	availability	
	globally and		Ecological	(particularly	
	nationally		Character	temporal and	
	threatened		Description	spatial	
	species and		(ECD), Murray	connectivity)	
	communities		Darling Basin	- Water regime	
	Supports a high		Plan (2013) and	(particularly	
	diversity of species		the following	flow patterns)	
	and assemblages		CLLAMMecolog	- Nutrient and	
	important for		y publications for	organic cycling	
	conservina		data		
	biodiversity at the		concerning		
	bioregional scale		underpinning		
	Supports animal		processes:		
	taxa at critical		- Aldridae et		
	stages of their		al. (2009)		
	lifecycle and		- Deeganet		
	during drought		al. (2009)		
	Supports		- Ford (2007)		
	significant		- Gillanders&		
	significant				

	numbers and diversity of wetland- dependent birds including migratory species listed under the JAMBA and CAMBA agreements Supports significant numbers and diversity of native fish, including migratory species.	Munro (2009) - Lamontagn eet al.(2007) - Langley et al.(2009) - Lester et al.(2009) - Lester &Fairweathe r (2008, 2009) - Noellet al.(2009) - Rogers & Paton (2009) - Rolsten&Ditt mann (2009) - Sharma et al.(2009) - Woelster	
Cultural	Aesthetics,	Yes – refer Cast	-
values Error	amenity	et al. (2008)	
!	Cultural and	Yes – refer Phillips	This will require updating through
Bookmark	spiritual	& Muller (2006)	consultation in order to ascertain
not	the	Character	significance (and whether this is/has
defined.	Naarrindieripeopl	Description	been affected by the changing
	e	(ECD)	condition of the Coorong and
			Lower Lakes).
	Educational and	Yes	Consultation with local schools and
	research site		Universities (as well as MBBA and DEWNR) should confirm the ongoing
			importance of the Coorona and
			Lower Lakes as educational and
			research sites.

South Lagoon										
Wetland type located within unit (as described in Phillips & Muller (2006)	Ecosystem service	Details of Ecosystem Service at Ramsar designation (1985)	Current status	Evidence?	Supporting processes	Knowledge Gaps				
 Rocky marine shores Sand, shingle or pebble shores Intertidal mud, sand or salt flats Coastal brackish/saline lagoons Permanent rivers/streams/creeks Seasonal/intermittent saline/brackish/alkaline 	Wetland Products	Drinking Water	Number of freshwater soaks around the South and North Lagoons has diminished and those remaining are becoming more saline (as opposed to brackish)	The Ngarrindjeri community have told of the freshwater soaks around South and North Lagoons having once been vital for freshwater for humans and animals	 Salinity Turbidity and sedimentation patterns Water levels Water regime (particularly flow patterns) Water quality 	Consultation with local users and stakeholders should establish whether the freshwater soaks are still usable.				

	lakes and flats	Commercial and	The sector in the	Yes -	-	Salinity	Econsearch (2011) for PIRSA
•	Seasonal/intermittent	recreational	Lakes and	36 fishing	-	Turbidity and	undertook an economic profile of
	saline/brackish/alkaline	fisheries	Coorong is a	licences current		sedimentation	the River Murray Region of SA
	marshes/pools		multi-species	in place ¹²		patterns	(utilising 2006/07 data). Consultation
•	Shrub-dominated		fishery	although only a	-	Keystone	should be undertaken with
	wetlands		including	small number		aquatic plant	PIRSA/Econsearch to ascertain
•	Freshwater, tree-		Coorong mullet,	are currently		species and	whether this report can be broken
	dominated wetlands		mulloway, bony	active		assemblages	down further to provide economic
•	Freshwater springs,		bream, callop,		-	Water levels	data on the Coorong, Alexandrina
	oases		European carp	Fishery Stock	-	Habitat	Coastal, Alexandrina Strathalbyn
			and	Status Report for		availability	District Council and Murray Bridge
			Goolwa cockle	the Southern		(particularly	Regional Council Statistical Local
			(Pipi).	Australian Lakes		temporal and	Areas only.
				and Coorong		spatial	
			There is a small	Fishery (Ferguson		connectivity)	Request from SARDI / PIRSA whether
			commercial	2012) provided	-	Water regime	a stock status assessment was
			fishery for	current data on		(particularly	carried out in 2011-2012 and update
			mulloway, mostly	the status of the		flow patterns)	if applicable.
			restricted to the	fishery and			
			Coorong Lagoons	showed the			
			where nets are	greatest			
			used to take fish	contributions to			
			between about	total catch in			
			46cm and 70cm in	2010-1011was			
			length.11	yellow-eye			
				mullet (with 47%			
				of the fishery			
				catch) and pipi			
				with the second			
				greatest (38%).			

¹¹http://www.pir.sa.gov.au/fisheries/recreational_fishing/target_species/mulloway
¹²http://www.environment.sa.gov.au/cllmm/pdfs/mhf-document.pdf

Grazing	Dairy and beef farms in areas adjacent to South Lagoon. Grazing is managed around key wetland areas through partnership with the farmers and DEWNR.	Yes - Dairy and beef farms adjacent to South Lagoon	-	Salinity Water levels Primary production Vegetational productivity, pollination, regeneration processes, succession etc.	Consultation required with PIRSA on number of dairy and beef farmers remaining within industry and/or having transitioned to dryland farming
Reeds and grasses for traditional crafts	Area significant for location of spiny flat-sedge and other reed species	Reduction in quantity and quality of reeds in recent years (Phillips and Muller 2006)	-	Salinity Water quality Primary productivity Vegetation productivity Water levels Farming (eg grazing pressures) Competition with other reed species	Although reported through consultation undertaken by Philips and Muller (as part of the 2006 ECD), consultation should be undertaken with DAARD and local stakeholders in relation to use of the Coorong and Lower Lakes by traditional owners.

	Traditional Ngarrindjeri food species (eggs, birds,fish, yabbies)	Area locally important for items such as swan, duck, seagull and emu eggs, fish such as hardyhead and yabbies (Phillips and Muller 2006)	Yes – although there has been a loss, or severe decline of many of these species and their products, particularly in recent years	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water quality Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly	Although reported through consultation undertaken by Philips and Muller (as part of the 2006 ECD), consultation should be undertaken with DAARD and local stakeholders in relation to use of the Coorong and Lower Lakes by traditional owners.
Maintenan ce of hydrologica I stability	Flood mitigation	-	South Lagoon is likely acting as flood mitigation on a localised level during elevates flows)-	-	Water levels Water regime (flow patterns and gradients) Slope and bank stability Connectivity between water bodies	Consultation could be undertaken with Alexandrina and Coorong Councils coastal engineer to ascertain their understanding of the role the Coorong and Lower Lakes play in local flood prevention. Was modelling carried out as part of the CLLAMMecology work as to the retention of each part of the system?

	Groundwater interactions	The number of freshwater soaks around South lagoon has diminished and those remaining are becoming more saline (as opposed to brackish)	Major processes such as groundwater recharge anddischarge, drylandsalinisatio n,irrigation and groundwater/sur face water interaction identified within this region Barnett (1991),Barnett (1994), Cobb and Barnett (1994).	-	Salinity Water levels (particularly in the aquifers) Water regime (particularly flow patterns and gradients) Connectivity of surface water and groundwater	A number of boreholes exist within the Coorong and Lower Lakes catchment. In 2010 they were being monitored by the LAP for depth and salinity (as part of 200 BH's monitored). Current monitoring status and who currently undertaking should be identified DEWNR?). Also SA Obswell Network online has 33 BH's located within and directly adjacent to the Lower Lakes and Coorong. This data could be analysed for groundwater levels and salinity changes. Up-to-date irrigation details to be requested from PIRSA / MDBA.
Water purification	Removal and dilution of wastewaters form irrigation areas, urban areas and septic tanks	_	Yes – South Lagoon receives catchment waters and sediments from the Upper South East Drainage Scheme via Salt Creek.	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Water regime (particularly flow patterns) Water retention times of Lakes	-

shoreline and bank stabilisation	Reduce impacts of wind and wave action and currents	-	Yes – the South and North lagoons play a key role in sheltering the habitats and communities behind them from wind and wave actions	 Keystone coastal plant species and assemblages Dune and bank stability and slope gradients Habitat availability 	Refer previous comments within North Lagoon table
	Prevent erosion by		Yes the coastal	(particularly temporal and spatial connectivity)	Pefer previous comments within
	Prevent erosion by holding sediments with plant roots		Yes - the coastal shoreline and vegetation plays a key role in prevention of wind erosion. This was particularly important during drought times when risk of ASS/PASS soils being exposed and mobilised through being blown around is higher	 pH and salinity Keystone aquatic plant species and assemblages Turbidity and sedimentation patterns Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow 	Refer previous comments within North Lagoon table

Sediment and nutrient retention	Flood retardation and sediment and nutrient deposition	-	Yes - South Lagoon receives catchment waters and sediments from the Upper South East Drainage Scheme via Salt Creek.	-	Soil, geology, substrates, soil type Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Water regime (particularly flow patterns)	-
Local climate regulation	Local climate stabilisation, particularly in relation to rainfall and temperature	-	No direct evidence although highly likely that Lagoons will be acting as climate regulators on a local level by absorbing heat during the day and expelling heat during the nights.	-	Area, boundary and dimensions of lake Temporal and spatial connectivity of Lake in conjunction to other water bodies Water regime (particularly flow patterns) Water levels Temperature and stratification	Further research required to provide evidence that lagoons are acting as climate regulators on a local scale.

Climate	Sequestering and	-	Yes – Brookes et al (2009)	-	Carbon cycling	-
mitigation	eyemig er earseri		demonstrated		cvclina	
0 -			the Lower Lakes			
			as a nutrient			
			(and likely			
			carbon) source			
			for the			
			downstream			
			Coorong and			
			Murray Mouth			
Biological	Support of		Yes – evidenced	-	Salinity	-
control of	predators of		through support	-	lurbidity and	
pest and	agricultural pests		of bird		sedimentation	
aiseases			populations (Pattop at		patterns	
			(FUTION er	-	Reysione	
			Rogers & Paton		species and	
			(2009)		species unu	
			(2007)	-	Water levels	
				-	Habitat	
					availability	
					(particularly	
					temporal and	
					spatial	
					connectivity)	
				-	Water regime	
					(particularly	
					flow patterns)	

Recreation and tourism	Boating and water skiing	Diminished in recent years (particularly during the drought) due to low water levels and flows	Yes – area historically has been a popular boating area.	-	Access Area, boundary and dimensions of Lakes Temporal and spatial connectivity of Lakes in conjunction to other water bodies Water regime (particularly flow patterns) Water levels Water quality Visual aesthetics	Current recreation and tourism numbers should be sought (Tourism SA?) Also refer Econsearch (2011) comments previously in relation to possible breakdown of economic data into smaller spatial units.
	Fishing	Diminished in recent years due to water quality issues (particularly salinity) and falling fish stocks	Yes – recreational fishing historically been a popular pastime in the Lagoons and adjacent areas	-	Salinity Turbidity and sedimentation patterns Keystone aquatic plant species and assemblages Water levels Habitat availability (particularly temporal and spatial connectivity) Water regime (particularly flow patterns)	Consultation with SARFAC and local fishers should be undertaken for up- to-date numbers of rec fishers utilising the area.

	Bird watching and sightseeing	Current status of bird numbers and	Yes - Site internationally	-	Salinity Turbidity and	Current status of bird numbers and visits needed – Consultation with
		visits needed	renowned for		sedimentation	Dave Paton and other experts as
			Refer Oborne	_	Keystone	well as local bird groups needed
			(2003) Patton	-	aquatic plant	
			et al (2009) and		species and	
			Rogers & Paton		assemblages	
			(2009)	-	Water levels	
			()	-	Habitat	
					availability	
					(particularly	
					temporal and	
					spatial	
					connectivity)	
				-	Water regime	
					(particularly	
					flow patterns)	
	Swimming,		Yes - reter CSIRO	-	Access	Consultation should be undertaken
	picnicking and		report.	-	Area,	with local tourism operators /
	camping		Defer also		dimensions of	caravan parks etc for current levels
			Relef diso		dimensions of	
			(2011)		Lukes Tomporal and	
			(2011)	-	spatial	
					connectivity of	
					Lakes in	
					conjunction to	
					other water	
					bodies	
				-	Water regime	
					(particularly	
					flow patterns)	
				-	Water levels	
				-	Water quality	
				-	Visual	
ł	1				aesthetics	

Food web	Nutrient cycling	Yes – Brookes et	-	Water levels	-
support	, .	al. (2009) demons	-	Salinity	
1- 1		trated the Lower	-	Turbidity and	
		Lakes as a food		sedimentation	
		source for the		patterns	
		downstream	-	Keystone	
		Coorong and		aquatic	
		Murray Mouth.		detritivores	
			-	Water regime	
		Also refer		(particularly	
		CLLAMMecolog		flow patterns)	
		y reports: Cook			
		et al. (2008),			
		Fernandes&			
		Tanner (2009),			
		Grigget			
		al. (2009),			
		Haeseet			
		al.(2009), Krullet			
		al. (2008; 2009)			

	Primary ecosystem	Submerged	Yes – refer	-	Salinity	-
	production	vegetation in the	CLLAMMecolog	-	Turbidity and	
		South Lagoon is	y reports		sedimentation	
		characterised by	- Aldridge et		patterns	
		extensive areas of	al. (2009)	-	Keystone	
		Ruppia	- Revillet		aquatic plant	
		tuberosa,	al. (2009)		species and	
		Lepilaena and	- Cook et		assemblages	
		Lamprothamnion	al. (2008)	-	Water levels	
		(Oborne, 2003).	- Nayar& Loo	-	Habitat	
		However, these	(2009)		availability	
		areas havegreatly			(particularly	
		declined in extent			temporal and	
		and quality. These			spatial	
		submerged plants			connectivity)	
		are a critical		-	Water regime	
		component of			(particularly	
		thehabitat as they			flow patterns)	
		provide a source		-	Nutrient and	
		of detritus for			organic cycling	
		benthic				
		communities and				
		architecture for				
		juvenile fish,				
		invertebrate and				
		biotilm habitat				
		(Oborne, 2003).				
		South Lagoon also				
		traditionally				
		supported a				
		limited number of				
		crustaceans				
		forego forwater				
		bird species				
		although those				
		have decreased				
		in number with				
		rising salinity lovels				
		instrug sources tevels.				

			1		
Ecological	Representative of	Yes – As	-	Salinity	A review of Ramsar status since
values	a unique	evidenced by	-	Turbidity and	designation should be undertaken.
	ecosystem	inclusion within		sedimentation	A focus could be made on bird
	(globally, national	the Ramsar Site		patterns	numbers as a surrogate for overall
	and regionally)	series. Refer	-	Keystone	ecological health. Will have to be in
	Supports a large	Ramsar		aquatic plant	two parts: designation to drought
	variety of	designation		species and	and post drought
	ecological	sheets.		assemblages	
	communities		-	Water levels	
	Supports a	Also refer Phillips	-	Habitat	
	number of	& Muller (2006)		availability	
	globally and	Ecological		(particularly	
	nationally	Character		temporal and	
	threatened	Description		spatial	
	species and	(ECD), Murray		connectivity)	
	communities	Darling Basin	-	Water regime	
	Supports a high	Plan (2013) and		(particularly	
	diversity of species	the following		flow patterns)	
	and assemblages	CLLAMMecolog	-	Nutrient and	
	important for	y publications for		organic cycling	
	conserving	data			
	biodiversity at the	concerning			
	bioregional scale	underpinning			
	Supports animal	processes:			
	taxa at critical	- Aldridge et			
	stages of their	al. (2009)			
	lifecycle and	- Deeganet			
	during drought	al. (2009)			
	Supports	- Ford (2007)			
	significant	- Gillanders&			
	numbers and	Munro			
	diversity of	(2009)			
	wetland-	- Lamontagn			
	dependent birds	eet al.(2007)			
	including	- Langley et			
	migratory species	al. (2009)			
	listed under the	- Lester et			
	IAMBA and	al. (2009)			
	CAMBA	- Lester			
	gareements	&Fairweathe			
	agrounding				

	Supports significant numbers and diversity of native fish, including migratory species.	r(2008, 2009) - Noellet al. (2009) - Rogers & Paton (2009) - Rolsten&Ditt mann (2009) - Sharma et al. (2009) - Webster	
Cultural values	Aesthetics, amenity Cultural and spiritual significance for the Ngarrindjeri people	(2005; 2007) Yes – refer Cast et al. (2008) Yes – refer Phillips & Muller (2006) Ecological Character Description (ECD)	- This will require updating through consultation in order to ascertain the ongoing cultural and spiritual significance (and whether this is/has been affected by the changing condition of the Coorong and Lower Lakes).
	Educational and research site	Yes	Consultation with local schools and Universities (as well as MBBA and DEWNR) should confirm the ongoing importance of the Coorong and Lower Lakes as educational and research sites.